Aleksandra Ilic, Nemanja Djokovic, Teodora Djikic , Katarina Nikolic
{"title":"整合三维-QSAR、分子对接和机器学习技术,合理设计基于烟酰胺的 SIRT2 抑制剂","authors":"Aleksandra Ilic, Nemanja Djokovic, Teodora Djikic , Katarina Nikolic","doi":"10.1016/j.compbiolchem.2024.108242","DOIUrl":null,"url":null,"abstract":"<div><div>Selective inhibitors of sirtuin-2 (SIRT2) are increasingly recognized as potential therapeutics for cancer and neurodegenerative diseases. Derivatives of 5-((3-amidobenzyl)oxy)nicotinamides have been identified as some of the most potent and selective SIRT2 inhibitors reported to date (<span><span>Ai et al., 2016</span></span>, <span><span>Ai et al., 2023</span></span>, <span><span>Baroni et al., 2007</span></span>). In this study, a 3D-QSAR (3D-Quantitative Structure-Activity Relationship) model was developed using a dataset of 86 nicotinamide-based SIRT2 inhibitors from the literature, along with GRIND-derived pharmacophore models for selected inhibitors. External validation parameters emphasized the reliability of the 3D-QSAR model in predicting SIRT2 inhibition within the defined applicability domain. The interpretation of the 3D-QSAR model facilitated the generation of GRIND-derived pharmacophore models, which in turn enabled the design of novel SIRT2 inhibitors. Furthermore, based on molecular docking results for the SIRT1–3 isoforms, two classification models were developed: a SIRT1/2 model using the Naive Bayes algorithm and a SIRT2/3 model using the k-nearest neighbors algorithm, to predict the selectivity of inhibitors for SIRT1/2 and SIRT2/3. External validation parameters of the selectivity models confirmed their predictive power. Ultimately, the integration of 3D-QSAR, selectivity models and prediction of ADMET properties facilitated the identification of the most promising selective SIRT2 inhibitors for further development.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108242"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of 3D-QSAR, molecular docking, and machine learning techniques for rational design of nicotinamide-based SIRT2 inhibitors\",\"authors\":\"Aleksandra Ilic, Nemanja Djokovic, Teodora Djikic , Katarina Nikolic\",\"doi\":\"10.1016/j.compbiolchem.2024.108242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Selective inhibitors of sirtuin-2 (SIRT2) are increasingly recognized as potential therapeutics for cancer and neurodegenerative diseases. Derivatives of 5-((3-amidobenzyl)oxy)nicotinamides have been identified as some of the most potent and selective SIRT2 inhibitors reported to date (<span><span>Ai et al., 2016</span></span>, <span><span>Ai et al., 2023</span></span>, <span><span>Baroni et al., 2007</span></span>). In this study, a 3D-QSAR (3D-Quantitative Structure-Activity Relationship) model was developed using a dataset of 86 nicotinamide-based SIRT2 inhibitors from the literature, along with GRIND-derived pharmacophore models for selected inhibitors. External validation parameters emphasized the reliability of the 3D-QSAR model in predicting SIRT2 inhibition within the defined applicability domain. The interpretation of the 3D-QSAR model facilitated the generation of GRIND-derived pharmacophore models, which in turn enabled the design of novel SIRT2 inhibitors. Furthermore, based on molecular docking results for the SIRT1–3 isoforms, two classification models were developed: a SIRT1/2 model using the Naive Bayes algorithm and a SIRT2/3 model using the k-nearest neighbors algorithm, to predict the selectivity of inhibitors for SIRT1/2 and SIRT2/3. External validation parameters of the selectivity models confirmed their predictive power. Ultimately, the integration of 3D-QSAR, selectivity models and prediction of ADMET properties facilitated the identification of the most promising selective SIRT2 inhibitors for further development.</div></div>\",\"PeriodicalId\":10616,\"journal\":{\"name\":\"Computational Biology and Chemistry\",\"volume\":\"113 \",\"pages\":\"Article 108242\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Biology and Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476927124002305\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002305","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Integration of 3D-QSAR, molecular docking, and machine learning techniques for rational design of nicotinamide-based SIRT2 inhibitors
Selective inhibitors of sirtuin-2 (SIRT2) are increasingly recognized as potential therapeutics for cancer and neurodegenerative diseases. Derivatives of 5-((3-amidobenzyl)oxy)nicotinamides have been identified as some of the most potent and selective SIRT2 inhibitors reported to date (Ai et al., 2016, Ai et al., 2023, Baroni et al., 2007). In this study, a 3D-QSAR (3D-Quantitative Structure-Activity Relationship) model was developed using a dataset of 86 nicotinamide-based SIRT2 inhibitors from the literature, along with GRIND-derived pharmacophore models for selected inhibitors. External validation parameters emphasized the reliability of the 3D-QSAR model in predicting SIRT2 inhibition within the defined applicability domain. The interpretation of the 3D-QSAR model facilitated the generation of GRIND-derived pharmacophore models, which in turn enabled the design of novel SIRT2 inhibitors. Furthermore, based on molecular docking results for the SIRT1–3 isoforms, two classification models were developed: a SIRT1/2 model using the Naive Bayes algorithm and a SIRT2/3 model using the k-nearest neighbors algorithm, to predict the selectivity of inhibitors for SIRT1/2 and SIRT2/3. External validation parameters of the selectivity models confirmed their predictive power. Ultimately, the integration of 3D-QSAR, selectivity models and prediction of ADMET properties facilitated the identification of the most promising selective SIRT2 inhibitors for further development.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.