通过多模态自适应稀疏学习进行帕金森病分类和预测

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biomedical Signal Processing and Control Pub Date : 2024-10-15 DOI:10.1016/j.bspc.2024.107061
Zhongwei Huang , Jianqiang Li , Jiatao Yang , Jun Wan , Jianxia Chen , Zhi Yang , Ming Shi , Ran Zhou , Haitao Gan
{"title":"通过多模态自适应稀疏学习进行帕金森病分类和预测","authors":"Zhongwei Huang ,&nbsp;Jianqiang Li ,&nbsp;Jiatao Yang ,&nbsp;Jun Wan ,&nbsp;Jianxia Chen ,&nbsp;Zhi Yang ,&nbsp;Ming Shi ,&nbsp;Ran Zhou ,&nbsp;Haitao Gan","doi":"10.1016/j.bspc.2024.107061","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson’s disease (PD) is a prevalent neurodegenerative disorder where early clinical diagnosis is critical for patients. In this study, we introduce a new embedded adaptive sparse learning method that integrates multimodal data, labeling, and clinical score information for early PD diagnosis. Based on the manifold learning theory, the proposed method utilizes a low-dimensional manifold to represent the structure of high-dimensional data. We carry out similarity learning and feature selection from different modalities while using the <span><math><mrow><msub><mi>l</mi><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></math></span> specification for adaptive sparsity control. Also, we dynamically learn the similarity between features to find more effective information in features. an effective optimization iterative algorithm is proposed to solve this problem. To validate the effectiveness of the proposed method, we conducted extensive experiments on the Parkinson’s Progression Markers Initiative (PPMI) database, including PD vs. normal controls (NC), scans without evidence of dopaminergic deficit (SWEDD) vs. NC, PD vs. SWEDD, and PD vs. SWEDD vs. NC. Using baseline data for experiments, our method achieved accuracies of 82.38%, 85.56%, 86.47%, and 65.54%, respectively. When using 12-month data, the accuracies were 77.43%, 95.26%, 95.35%, and 77.98%, respectively. Overall, our method outperformed the other methods. Additionally, the performance of the three deep models using the feature subsets selected by our method surpassed that achieved using the original data, further validating the effectiveness of our method.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parkinson’s disease classification and prediction via adaptive sparse learning from multiple modalities\",\"authors\":\"Zhongwei Huang ,&nbsp;Jianqiang Li ,&nbsp;Jiatao Yang ,&nbsp;Jun Wan ,&nbsp;Jianxia Chen ,&nbsp;Zhi Yang ,&nbsp;Ming Shi ,&nbsp;Ran Zhou ,&nbsp;Haitao Gan\",\"doi\":\"10.1016/j.bspc.2024.107061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Parkinson’s disease (PD) is a prevalent neurodegenerative disorder where early clinical diagnosis is critical for patients. In this study, we introduce a new embedded adaptive sparse learning method that integrates multimodal data, labeling, and clinical score information for early PD diagnosis. Based on the manifold learning theory, the proposed method utilizes a low-dimensional manifold to represent the structure of high-dimensional data. We carry out similarity learning and feature selection from different modalities while using the <span><math><mrow><msub><mi>l</mi><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></math></span> specification for adaptive sparsity control. Also, we dynamically learn the similarity between features to find more effective information in features. an effective optimization iterative algorithm is proposed to solve this problem. To validate the effectiveness of the proposed method, we conducted extensive experiments on the Parkinson’s Progression Markers Initiative (PPMI) database, including PD vs. normal controls (NC), scans without evidence of dopaminergic deficit (SWEDD) vs. NC, PD vs. SWEDD, and PD vs. SWEDD vs. NC. Using baseline data for experiments, our method achieved accuracies of 82.38%, 85.56%, 86.47%, and 65.54%, respectively. When using 12-month data, the accuracies were 77.43%, 95.26%, 95.35%, and 77.98%, respectively. Overall, our method outperformed the other methods. Additionally, the performance of the three deep models using the feature subsets selected by our method surpassed that achieved using the original data, further validating the effectiveness of our method.</div></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809424011194\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424011194","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种常见的神经退行性疾病,早期临床诊断对患者至关重要。在本研究中,我们介绍了一种新的嵌入式自适应稀疏学习方法,该方法整合了多模态数据、标签和临床评分信息,可用于帕金森病的早期诊断。基于流形学习理论,该方法利用低维流形来表示高维数据的结构。我们从不同的模态中进行相似性学习和特征选择,同时使用 l2,p 规范进行自适应稀疏性控制。此外,我们还动态学习特征之间的相似性,以便在特征中找到更多有效信息。我们提出了一种有效的优化迭代算法来解决这个问题。为了验证所提方法的有效性,我们在帕金森病进展标志物倡议(PPMI)数据库上进行了大量实验,包括帕金森病与正常对照组(NC)、无多巴胺能缺陷扫描(SWEDD)与 NC、帕金森病与 SWEDD、帕金森病与 SWEDD 与 NC。使用基线数据进行实验时,我们的方法的准确率分别为 82.38%、85.56%、86.47% 和 65.54%。使用 12 个月数据时,准确率分别为 77.43%、95.26%、95.35% 和 77.98%。总体而言,我们的方法优于其他方法。此外,使用我们的方法选择的特征子集的三个深度模型的性能超过了使用原始数据的性能,进一步验证了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parkinson’s disease classification and prediction via adaptive sparse learning from multiple modalities
Parkinson’s disease (PD) is a prevalent neurodegenerative disorder where early clinical diagnosis is critical for patients. In this study, we introduce a new embedded adaptive sparse learning method that integrates multimodal data, labeling, and clinical score information for early PD diagnosis. Based on the manifold learning theory, the proposed method utilizes a low-dimensional manifold to represent the structure of high-dimensional data. We carry out similarity learning and feature selection from different modalities while using the l2,p specification for adaptive sparsity control. Also, we dynamically learn the similarity between features to find more effective information in features. an effective optimization iterative algorithm is proposed to solve this problem. To validate the effectiveness of the proposed method, we conducted extensive experiments on the Parkinson’s Progression Markers Initiative (PPMI) database, including PD vs. normal controls (NC), scans without evidence of dopaminergic deficit (SWEDD) vs. NC, PD vs. SWEDD, and PD vs. SWEDD vs. NC. Using baseline data for experiments, our method achieved accuracies of 82.38%, 85.56%, 86.47%, and 65.54%, respectively. When using 12-month data, the accuracies were 77.43%, 95.26%, 95.35%, and 77.98%, respectively. Overall, our method outperformed the other methods. Additionally, the performance of the three deep models using the feature subsets selected by our method surpassed that achieved using the original data, further validating the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
期刊最新文献
Automated pericardium segmentation and epicardial adipose tissue quantification from computed tomography images A design of computational stochastic framework for the mathematical severe acute respiratory syndrome coronavirus model Topological feature search method for multichannel EEG: Application in ADHD classification ROPRNet: Deep learning-assisted recurrence prediction for retinopathy of prematurity Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1