{"title":"用于垂直荷载桩的轴向温克勒弹簧","authors":"Rui He , Dan Wang , Amir M. Kaynia","doi":"10.1016/j.marstruc.2024.103707","DOIUrl":null,"url":null,"abstract":"<div><div>Axial soil spring stiffness along piles is crucial in the dynamic analysis of offshore jacket foundations. This study proposes a rigorous analytical model for vertically loaded piles embedded in a soil layer based on Green's functions. The stiffness of both end-bearing piles and floating piles can be obtained from this model, which is different from previous studies that have considered end-bearing piles and floating piles by two different models. The study investigates various factors affecting the soil springs. The actual distribution of soil spring stiffness is complicated, even for homogeneous soils. To facilitate the engineering application, the soil spring stiffness is averaged to uniform distribution according to the equivalent work method. The pile with relative pile-soil axial stiffness greater than 1.5 can be treated as a rigid pile in which the soil spring stiffness depends primarily on the pile slenderness ratios. For other cases, referred to as flexible piles, the soil spring stiffness depends on both pile slenderness ratio and pile-soil modulus ratio. Simplified analytical expressions are proposed for the averaged soil spring stiffness of both rigid and flexible piles in different soil profiles. Besides, the soil layer effect is significant for short piles but negligible for long piles.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"99 ","pages":"Article 103707"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axial Winkler springs for vertically loaded piles\",\"authors\":\"Rui He , Dan Wang , Amir M. Kaynia\",\"doi\":\"10.1016/j.marstruc.2024.103707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Axial soil spring stiffness along piles is crucial in the dynamic analysis of offshore jacket foundations. This study proposes a rigorous analytical model for vertically loaded piles embedded in a soil layer based on Green's functions. The stiffness of both end-bearing piles and floating piles can be obtained from this model, which is different from previous studies that have considered end-bearing piles and floating piles by two different models. The study investigates various factors affecting the soil springs. The actual distribution of soil spring stiffness is complicated, even for homogeneous soils. To facilitate the engineering application, the soil spring stiffness is averaged to uniform distribution according to the equivalent work method. The pile with relative pile-soil axial stiffness greater than 1.5 can be treated as a rigid pile in which the soil spring stiffness depends primarily on the pile slenderness ratios. For other cases, referred to as flexible piles, the soil spring stiffness depends on both pile slenderness ratio and pile-soil modulus ratio. Simplified analytical expressions are proposed for the averaged soil spring stiffness of both rigid and flexible piles in different soil profiles. Besides, the soil layer effect is significant for short piles but negligible for long piles.</div></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"99 \",\"pages\":\"Article 103707\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924001357\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924001357","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Axial soil spring stiffness along piles is crucial in the dynamic analysis of offshore jacket foundations. This study proposes a rigorous analytical model for vertically loaded piles embedded in a soil layer based on Green's functions. The stiffness of both end-bearing piles and floating piles can be obtained from this model, which is different from previous studies that have considered end-bearing piles and floating piles by two different models. The study investigates various factors affecting the soil springs. The actual distribution of soil spring stiffness is complicated, even for homogeneous soils. To facilitate the engineering application, the soil spring stiffness is averaged to uniform distribution according to the equivalent work method. The pile with relative pile-soil axial stiffness greater than 1.5 can be treated as a rigid pile in which the soil spring stiffness depends primarily on the pile slenderness ratios. For other cases, referred to as flexible piles, the soil spring stiffness depends on both pile slenderness ratio and pile-soil modulus ratio. Simplified analytical expressions are proposed for the averaged soil spring stiffness of both rigid and flexible piles in different soil profiles. Besides, the soil layer effect is significant for short piles but negligible for long piles.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.