{"title":"SplineGen:通过生成式人工智能逼近无组织点","authors":"Qiang Zou, Lizhen Zhu, Jiayu Wu, Zhijie Yang","doi":"10.1016/j.cad.2024.103809","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. Parameters and knots are generated in an associative way to attain better parameter-knot alignment, and therefore a higher approximation accuracy. These features are attained by using a new generative model SplineGen, which casts the parameterization and knot placement problems as a sequence-to-sequence translation problem. It first adopts a shared autoencoder model to learn a 512-D embedding for each input point, which has the local neighborhood information implicitly captured. Then these embeddings are autoregressively decoded into parameters and knots by two associative decoders, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. The two decoders are made to work in a coordinated manner by a new network module called internal cross-attention. Once trained, SplineGen demonstrates a notable improvement over existing methods, with one to two orders of magnitude increase in approximation accuracy on test data.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SplineGen: Approximating unorganized points through generative AI\",\"authors\":\"Qiang Zou, Lizhen Zhu, Jiayu Wu, Zhijie Yang\",\"doi\":\"10.1016/j.cad.2024.103809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. Parameters and knots are generated in an associative way to attain better parameter-knot alignment, and therefore a higher approximation accuracy. These features are attained by using a new generative model SplineGen, which casts the parameterization and knot placement problems as a sequence-to-sequence translation problem. It first adopts a shared autoencoder model to learn a 512-D embedding for each input point, which has the local neighborhood information implicitly captured. Then these embeddings are autoregressively decoded into parameters and knots by two associative decoders, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. The two decoders are made to work in a coordinated manner by a new network module called internal cross-attention. Once trained, SplineGen demonstrates a notable improvement over existing methods, with one to two orders of magnitude increase in approximation accuracy on test data.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448524001362\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524001362","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
SplineGen: Approximating unorganized points through generative AI
This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. Parameters and knots are generated in an associative way to attain better parameter-knot alignment, and therefore a higher approximation accuracy. These features are attained by using a new generative model SplineGen, which casts the parameterization and knot placement problems as a sequence-to-sequence translation problem. It first adopts a shared autoencoder model to learn a 512-D embedding for each input point, which has the local neighborhood information implicitly captured. Then these embeddings are autoregressively decoded into parameters and knots by two associative decoders, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. The two decoders are made to work in a coordinated manner by a new network module called internal cross-attention. Once trained, SplineGen demonstrates a notable improvement over existing methods, with one to two orders of magnitude increase in approximation accuracy on test data.