SplineGen:通过生成式人工智能逼近无组织点

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-10-10 DOI:10.1016/j.cad.2024.103809
Qiang Zou, Lizhen Zhu, Jiayu Wu, Zhijie Yang
{"title":"SplineGen:通过生成式人工智能逼近无组织点","authors":"Qiang Zou,&nbsp;Lizhen Zhu,&nbsp;Jiayu Wu,&nbsp;Zhijie Yang","doi":"10.1016/j.cad.2024.103809","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. Parameters and knots are generated in an associative way to attain better parameter-knot alignment, and therefore a higher approximation accuracy. These features are attained by using a new generative model SplineGen, which casts the parameterization and knot placement problems as a sequence-to-sequence translation problem. It first adopts a shared autoencoder model to learn a 512-D embedding for each input point, which has the local neighborhood information implicitly captured. Then these embeddings are autoregressively decoded into parameters and knots by two associative decoders, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. The two decoders are made to work in a coordinated manner by a new network module called internal cross-attention. Once trained, SplineGen demonstrates a notable improvement over existing methods, with one to two orders of magnitude increase in approximation accuracy on test data.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SplineGen: Approximating unorganized points through generative AI\",\"authors\":\"Qiang Zou,&nbsp;Lizhen Zhu,&nbsp;Jiayu Wu,&nbsp;Zhijie Yang\",\"doi\":\"10.1016/j.cad.2024.103809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. Parameters and knots are generated in an associative way to attain better parameter-knot alignment, and therefore a higher approximation accuracy. These features are attained by using a new generative model SplineGen, which casts the parameterization and knot placement problems as a sequence-to-sequence translation problem. It first adopts a shared autoencoder model to learn a 512-D embedding for each input point, which has the local neighborhood information implicitly captured. Then these embeddings are autoregressively decoded into parameters and knots by two associative decoders, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. The two decoders are made to work in a coordinated manner by a new network module called internal cross-attention. Once trained, SplineGen demonstrates a notable improvement over existing methods, with one to two orders of magnitude increase in approximation accuracy on test data.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448524001362\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524001362","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于学习的方法,用于解决 B-样条逼近中的传统参数化和节点放置问题。与传统的启发式方法或最新的基于人工智能的方法不同,本文提出的方法不假定有序或固定大小的数据点作为输入。此外,也无需手动设置节点数量。参数和节点以关联方式生成,以实现更好的参数-节点对齐,从而提高近似精度。这些特点是通过使用新的生成模型 SplineGen 实现的,该模型将参数化和节点放置问题视为序列到序列的转换问题。它首先采用共享自动编码器模型,为每个输入点学习 512-D 嵌入,其中隐含了本地邻域信息。然后,由两个关联解码器将这些嵌入自回归解码为参数和结点,一个生成过程自动决定结点的数量、位置、参数值及其排序。这两个解码器通过一个称为内部交叉注意的新网络模块协调工作。经过训练后,SplineGen 与现有方法相比有了显著改进,测试数据的近似精度提高了一到两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SplineGen: Approximating unorganized points through generative AI
This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. Parameters and knots are generated in an associative way to attain better parameter-knot alignment, and therefore a higher approximation accuracy. These features are attained by using a new generative model SplineGen, which casts the parameterization and knot placement problems as a sequence-to-sequence translation problem. It first adopts a shared autoencoder model to learn a 512-D embedding for each input point, which has the local neighborhood information implicitly captured. Then these embeddings are autoregressively decoded into parameters and knots by two associative decoders, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. The two decoders are made to work in a coordinated manner by a new network module called internal cross-attention. Once trained, SplineGen demonstrates a notable improvement over existing methods, with one to two orders of magnitude increase in approximation accuracy on test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning. Evaluation of the potential of achachairu peel (Garcinia humilis) for the fortification of cereal-based foods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1