{"title":"通过牺牲芯鞘电纺丝技术制造临床相关尺寸的管状毛细管仿制品","authors":"Yan Chen, Yingge Zhou","doi":"10.1016/j.mfglet.2024.09.056","DOIUrl":null,"url":null,"abstract":"<div><div>Electrospinning is a versatile technique that is often used to fabricate ultra-fine fibers. With the help of a coaxial spinneret, microtubes can be fabricated as potential biomimetic capillary vessels. However, the sizes of electrospun microtubes in recent research were around 5 μm which is smaller to native capillary vessels (5–10 μm). The electrospun microtube diameter can be determined by various electrospinning parameters such as spinning materials, solvent, spinning distance, solution pump rate, applied voltage, etc. In this research, we explored the effects of spinning distance and core/sheath pump rate ratio on microtube diameter and wall thickness. Viscosity, wettability, and tensile tests were also conducted for microtube characterization. The results indicated that the microtube diameters range from 5 μm to 12 μm, which provides a promising direction for the fabrication of biomimetic capillary vessels.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 462-468"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical-relevant sized tubular capillary mimicries by sacrificial core-sheath electrospinning\",\"authors\":\"Yan Chen, Yingge Zhou\",\"doi\":\"10.1016/j.mfglet.2024.09.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrospinning is a versatile technique that is often used to fabricate ultra-fine fibers. With the help of a coaxial spinneret, microtubes can be fabricated as potential biomimetic capillary vessels. However, the sizes of electrospun microtubes in recent research were around 5 μm which is smaller to native capillary vessels (5–10 μm). The electrospun microtube diameter can be determined by various electrospinning parameters such as spinning materials, solvent, spinning distance, solution pump rate, applied voltage, etc. In this research, we explored the effects of spinning distance and core/sheath pump rate ratio on microtube diameter and wall thickness. Viscosity, wettability, and tensile tests were also conducted for microtube characterization. The results indicated that the microtube diameters range from 5 μm to 12 μm, which provides a promising direction for the fabrication of biomimetic capillary vessels.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"41 \",\"pages\":\"Pages 462-468\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846324001184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324001184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Clinical-relevant sized tubular capillary mimicries by sacrificial core-sheath electrospinning
Electrospinning is a versatile technique that is often used to fabricate ultra-fine fibers. With the help of a coaxial spinneret, microtubes can be fabricated as potential biomimetic capillary vessels. However, the sizes of electrospun microtubes in recent research were around 5 μm which is smaller to native capillary vessels (5–10 μm). The electrospun microtube diameter can be determined by various electrospinning parameters such as spinning materials, solvent, spinning distance, solution pump rate, applied voltage, etc. In this research, we explored the effects of spinning distance and core/sheath pump rate ratio on microtube diameter and wall thickness. Viscosity, wettability, and tensile tests were also conducted for microtube characterization. The results indicated that the microtube diameters range from 5 μm to 12 μm, which provides a promising direction for the fabrication of biomimetic capillary vessels.