通过分子动力学模拟研究电化学放电过程中的气膜形成

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Letters Pub Date : 2024-10-01 DOI:10.1016/j.mfglet.2024.09.042
Yu-Jen Chen, Murali Sundaram
{"title":"通过分子动力学模拟研究电化学放电过程中的气膜形成","authors":"Yu-Jen Chen,&nbsp;Murali Sundaram","doi":"10.1016/j.mfglet.2024.09.042","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular Dynamics (MD) simulations have emerged as a potent analytical tool for dissecting the intricate processes involved in nano gas film bubble generation. This study employs MD simulations to identify critical voltage that marks the transition from bubble saturation to gas film formation, while employing a mimic electrolysis model to expedite simulations through accelerated molecular insert rates. The simulations provide insights into underlying mechanisms, revealing the reforming and condensing dynamics of gas structures preceding gas film genesis. Experimental validation corroborates the accuracy of critical voltage predictions derived from MD simulations, with the close alignment between simulated critical points and experimental outcomes underscoring the robust predictive capability of MD simulations in elucidating electrochemical discharging (ECD) processes.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 351-356"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the gas film formation in electrochemical discharging processes by molecular dynamics simulation\",\"authors\":\"Yu-Jen Chen,&nbsp;Murali Sundaram\",\"doi\":\"10.1016/j.mfglet.2024.09.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular Dynamics (MD) simulations have emerged as a potent analytical tool for dissecting the intricate processes involved in nano gas film bubble generation. This study employs MD simulations to identify critical voltage that marks the transition from bubble saturation to gas film formation, while employing a mimic electrolysis model to expedite simulations through accelerated molecular insert rates. The simulations provide insights into underlying mechanisms, revealing the reforming and condensing dynamics of gas structures preceding gas film genesis. Experimental validation corroborates the accuracy of critical voltage predictions derived from MD simulations, with the close alignment between simulated critical points and experimental outcomes underscoring the robust predictive capability of MD simulations in elucidating electrochemical discharging (ECD) processes.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"41 \",\"pages\":\"Pages 351-356\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846324001044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324001044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

分子动力学(MD)模拟已成为剖析纳米气膜气泡生成复杂过程的有效分析工具。本研究利用 MD 模拟来确定从气泡饱和到气膜形成的临界电压,同时采用模拟电解模型,通过加快分子插入速率来加速模拟。模拟深入揭示了气膜形成前气体结构的重整和冷凝动态。实验验证证实了 MD 模拟得出的临界电压预测的准确性,模拟临界点与实验结果之间的密切吻合强调了 MD 模拟在阐明电化学放电 (ECD) 过程中的强大预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on the gas film formation in electrochemical discharging processes by molecular dynamics simulation
Molecular Dynamics (MD) simulations have emerged as a potent analytical tool for dissecting the intricate processes involved in nano gas film bubble generation. This study employs MD simulations to identify critical voltage that marks the transition from bubble saturation to gas film formation, while employing a mimic electrolysis model to expedite simulations through accelerated molecular insert rates. The simulations provide insights into underlying mechanisms, revealing the reforming and condensing dynamics of gas structures preceding gas film genesis. Experimental validation corroborates the accuracy of critical voltage predictions derived from MD simulations, with the close alignment between simulated critical points and experimental outcomes underscoring the robust predictive capability of MD simulations in elucidating electrochemical discharging (ECD) processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
期刊最新文献
Applicability of circularity protocols to extend the lifetime of a thermoplastic pultrusion line: A case study Feasibility study of using friction stir extruded recycled aluminum rods for welding and additive manufacturing Scalable and efficient fabrication of surface microstructures using a small wheeled robot with a vibration-cutting tool Influence of parameter variation and interlayer temperature control in wall angle, curvature and measurement methodology of ER70S-6 parts obtained by WAAM Hard and wear resistant AISI304 stainless steel clad layer deposited on mild steel substrate by TIG cladding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1