融合 IK:利用混合深度学习和进化方法解决逆运动学问题

IF 1.9 Q3 ENGINEERING, MANUFACTURING Manufacturing Letters Pub Date : 2024-10-01 DOI:10.1016/j.mfglet.2024.09.005
Steven Rice , Ahmed Azab , Sherif Saad
{"title":"融合 IK:利用混合深度学习和进化方法解决逆运动学问题","authors":"Steven Rice ,&nbsp;Ahmed Azab ,&nbsp;Sherif Saad","doi":"10.1016/j.mfglet.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><div>Inverse kinematics is a core aspect of robot manipulation. This paper presents an approach to solving Inverse Kinematics (IK) for robots, including articulated industrial ones, combining deep learning with an evolutionary algorithm. Fusion IK passes the manipulator’s target and current joint values into a neural network, the results of which are then used to seed an evolutionary algorithm, Bio IK, to complete the solution of the inverse kinematics problem. Fusion IK allows for solving the position and orientation of the robot while attempting to minimize joint movement times. Comparisons between Fusion IK and its underlying algorithm Bio IK are tested on a six-degree-of-freedom articulated industrial robot as well as a 20-degree-of-freedom robot to explore the move times that Fusion IK produces. The comparisons show that the variations of the Fusion IK algorithm show comparable results to its underlying evolutionary Bio IK algorithm on a six-degrees-of-freedom articulated robot and improvements on a 20-degree-of-freedom robot without any additional hyperparameter tuning. The results show that Fusion IK could be of real value regarding the movement time and the quality of the obtained solutions upon further research, especially with higher degree-of-freedom robots.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 9-18"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fusion IK: Solving inverse kinematics using a hybridized deep learning and evolutionary approach\",\"authors\":\"Steven Rice ,&nbsp;Ahmed Azab ,&nbsp;Sherif Saad\",\"doi\":\"10.1016/j.mfglet.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inverse kinematics is a core aspect of robot manipulation. This paper presents an approach to solving Inverse Kinematics (IK) for robots, including articulated industrial ones, combining deep learning with an evolutionary algorithm. Fusion IK passes the manipulator’s target and current joint values into a neural network, the results of which are then used to seed an evolutionary algorithm, Bio IK, to complete the solution of the inverse kinematics problem. Fusion IK allows for solving the position and orientation of the robot while attempting to minimize joint movement times. Comparisons between Fusion IK and its underlying algorithm Bio IK are tested on a six-degree-of-freedom articulated industrial robot as well as a 20-degree-of-freedom robot to explore the move times that Fusion IK produces. The comparisons show that the variations of the Fusion IK algorithm show comparable results to its underlying evolutionary Bio IK algorithm on a six-degrees-of-freedom articulated robot and improvements on a 20-degree-of-freedom robot without any additional hyperparameter tuning. The results show that Fusion IK could be of real value regarding the movement time and the quality of the obtained solutions upon further research, especially with higher degree-of-freedom robots.</div></div>\",\"PeriodicalId\":38186,\"journal\":{\"name\":\"Manufacturing Letters\",\"volume\":\"41 \",\"pages\":\"Pages 9-18\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manufacturing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213846324000622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213846324000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

逆运动学是机器人操纵的一个核心方面。本文介绍了一种结合深度学习与进化算法的机器人逆运动学(IK)求解方法,包括关节型工业机器人。Fusion IK 将机械手的目标值和当前关节值传入神经网络,然后利用神经网络的结果为进化算法 Bio IK 提供种子,完成逆运动学问题的求解。Fusion IK 可以解决机器人的位置和方向问题,同时试图最大限度地减少关节运动时间。我们在一个六自由度铰接式工业机器人和一个 20 自由度机器人上测试了 Fusion IK 与其基础算法 Bio IK 之间的比较,以探索 Fusion IK 所产生的移动时间。比较结果表明,在六自由度铰接式机器人上,Fusion IK 算法的变体与其底层进化 Bio IK 算法的结果相当,而在 20 自由度机器人上则有所改进,无需额外调整超参数。研究结果表明,Fusion IK 在运动时间和所获解决方案质量方面具有实际价值,有待进一步研究,特别是在更高自由度的机器人上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fusion IK: Solving inverse kinematics using a hybridized deep learning and evolutionary approach
Inverse kinematics is a core aspect of robot manipulation. This paper presents an approach to solving Inverse Kinematics (IK) for robots, including articulated industrial ones, combining deep learning with an evolutionary algorithm. Fusion IK passes the manipulator’s target and current joint values into a neural network, the results of which are then used to seed an evolutionary algorithm, Bio IK, to complete the solution of the inverse kinematics problem. Fusion IK allows for solving the position and orientation of the robot while attempting to minimize joint movement times. Comparisons between Fusion IK and its underlying algorithm Bio IK are tested on a six-degree-of-freedom articulated industrial robot as well as a 20-degree-of-freedom robot to explore the move times that Fusion IK produces. The comparisons show that the variations of the Fusion IK algorithm show comparable results to its underlying evolutionary Bio IK algorithm on a six-degrees-of-freedom articulated robot and improvements on a 20-degree-of-freedom robot without any additional hyperparameter tuning. The results show that Fusion IK could be of real value regarding the movement time and the quality of the obtained solutions upon further research, especially with higher degree-of-freedom robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manufacturing Letters
Manufacturing Letters Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
5.10%
发文量
192
审稿时长
60 days
期刊最新文献
Applicability of circularity protocols to extend the lifetime of a thermoplastic pultrusion line: A case study Feasibility study of using friction stir extruded recycled aluminum rods for welding and additive manufacturing Scalable and efficient fabrication of surface microstructures using a small wheeled robot with a vibration-cutting tool Influence of parameter variation and interlayer temperature control in wall angle, curvature and measurement methodology of ER70S-6 parts obtained by WAAM Hard and wear resistant AISI304 stainless steel clad layer deposited on mild steel substrate by TIG cladding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1