利用基因表达数据进行基于 ZFNet 和深度 Maxout 网络的癌症预测

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biomedical Signal Processing and Control Pub Date : 2024-10-14 DOI:10.1016/j.bspc.2024.107038
G. Vijaya , K. Ramesh , G. Sathish Kumar
{"title":"利用基因表达数据进行基于 ZFNet 和深度 Maxout 网络的癌症预测","authors":"G. Vijaya ,&nbsp;K. Ramesh ,&nbsp;G. Sathish Kumar","doi":"10.1016/j.bspc.2024.107038","DOIUrl":null,"url":null,"abstract":"<div><div>The earlier predictions of cancer types are highly essential. Currently, gene expression data (GED) is employed for effective and earlier diagnosing of cancer. The GED allows the models to effectively learn the problem and acts as the most efficient strategy for extracting relevant and new data. Various researchers have implemented many techniques for cancer prediction but the accuracy is required to be improved for the early prediction. Here, the Zeiler and Fergus network fused Deep Maxout Network (ZF-maxout Net) is designed for cancer prediction using GED. At first, input GED data is taken from a certain dataset. Then, data transformation is performed in input GED utilizing Box-Cox transformation. After that, feature fusion (FF) is conducted using the Deep Neural Network (DNN) with Kulczynski similarity. Finally, the cancer prediction is done by utilizing ZF-maxout Net. Moreover, ZF-maxout Net is an amalgamation of the Zeiler and Fergus network (ZFNet) and Deep Maxout Network (DMN). In addition, ZF-mCanceraxout Net obtained a maximal accuracy of 92.7 %, a True Positive Rate (TPR) of 95.8 % and a minimal False Negative Rate (FNR) of 49.9 %.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZFNet and deep Maxout network based cancer prediction using gene expression data\",\"authors\":\"G. Vijaya ,&nbsp;K. Ramesh ,&nbsp;G. Sathish Kumar\",\"doi\":\"10.1016/j.bspc.2024.107038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The earlier predictions of cancer types are highly essential. Currently, gene expression data (GED) is employed for effective and earlier diagnosing of cancer. The GED allows the models to effectively learn the problem and acts as the most efficient strategy for extracting relevant and new data. Various researchers have implemented many techniques for cancer prediction but the accuracy is required to be improved for the early prediction. Here, the Zeiler and Fergus network fused Deep Maxout Network (ZF-maxout Net) is designed for cancer prediction using GED. At first, input GED data is taken from a certain dataset. Then, data transformation is performed in input GED utilizing Box-Cox transformation. After that, feature fusion (FF) is conducted using the Deep Neural Network (DNN) with Kulczynski similarity. Finally, the cancer prediction is done by utilizing ZF-maxout Net. Moreover, ZF-maxout Net is an amalgamation of the Zeiler and Fergus network (ZFNet) and Deep Maxout Network (DMN). In addition, ZF-mCanceraxout Net obtained a maximal accuracy of 92.7 %, a True Positive Rate (TPR) of 95.8 % and a minimal False Negative Rate (FNR) of 49.9 %.</div></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809424010966\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424010966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

及早预测癌症类型至关重要。目前,基因表达数据(GED)被用于有效和更早地诊断癌症。基因表达数据允许模型有效地学习问题,是提取相关新数据的最有效策略。不同的研究人员已经采用了许多癌症预测技术,但早期预测的准确性仍有待提高。在此,我们设计了融合了 Deep Maxout 网络的 Zeiler 和 Fergus 网络(ZF-maxout 网络),用于使用 GED 进行癌症预测。首先,从某个数据集中获取输入 GED 数据。然后,利用 Box-Cox 转换对输入 GED 进行数据转换。然后,使用具有库尔钦斯基相似性的深度神经网络(DNN)进行特征融合(FF)。最后,利用 ZF-maxout Net 进行癌症预测。此外,ZF-maxout 网络是 Zeiler 和 Fergus 网络(ZFNet)与 Deep Maxout 网络(DMN)的混合体。此外,ZF-mCanceraxout 网络的最高准确率为 92.7%,真阳性率(TPR)为 95.8%,最小假阴性率(FNR)为 49.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZFNet and deep Maxout network based cancer prediction using gene expression data
The earlier predictions of cancer types are highly essential. Currently, gene expression data (GED) is employed for effective and earlier diagnosing of cancer. The GED allows the models to effectively learn the problem and acts as the most efficient strategy for extracting relevant and new data. Various researchers have implemented many techniques for cancer prediction but the accuracy is required to be improved for the early prediction. Here, the Zeiler and Fergus network fused Deep Maxout Network (ZF-maxout Net) is designed for cancer prediction using GED. At first, input GED data is taken from a certain dataset. Then, data transformation is performed in input GED utilizing Box-Cox transformation. After that, feature fusion (FF) is conducted using the Deep Neural Network (DNN) with Kulczynski similarity. Finally, the cancer prediction is done by utilizing ZF-maxout Net. Moreover, ZF-maxout Net is an amalgamation of the Zeiler and Fergus network (ZFNet) and Deep Maxout Network (DMN). In addition, ZF-mCanceraxout Net obtained a maximal accuracy of 92.7 %, a True Positive Rate (TPR) of 95.8 % and a minimal False Negative Rate (FNR) of 49.9 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
期刊最新文献
Automated pericardium segmentation and epicardial adipose tissue quantification from computed tomography images A design of computational stochastic framework for the mathematical severe acute respiratory syndrome coronavirus model Topological feature search method for multichannel EEG: Application in ADHD classification ROPRNet: Deep learning-assisted recurrence prediction for retinopathy of prematurity Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1