用于 RGB-D 镜面分割的语义渐进引导网络

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-10-07 DOI:10.1109/LSP.2024.3475357
Chao Li;Wujie Zhou;Xi Zhou;Weiqing Yan
{"title":"用于 RGB-D 镜面分割的语义渐进引导网络","authors":"Chao Li;Wujie Zhou;Xi Zhou;Weiqing Yan","doi":"10.1109/LSP.2024.3475357","DOIUrl":null,"url":null,"abstract":"Existing salient target detection methods tend to use a single-mirror segmentation strategy, which ignores feature hierarchy information in the frequency domain and lacks fine-grained correspondence. To address these challenges, we propose a new semantic progressive guidance network (SPGNet). To mine sufficient effective information, we propose the wavelet bidirectional focusing (WBF) module to aggregate sub-band features through a bidirectional wavelet transform and fuse them with low-level features to deepen the detail mining. We also introduce the Gaussian fusion complementary (GFC) module, which adopts Gaussian filtering technology to optimize the feature space and then efficiently extracts the contour information through enhanced feature processing. In addition, we propose a global correlation bootstrapping (GCB) module that constructs region-to-pixel correlations from a global perspective to achieve fine-grained correspondence. The proposed model achieves competitive results on a benchmark dataset.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Progressive Guidance Network for RGB-D Mirror Segmentation\",\"authors\":\"Chao Li;Wujie Zhou;Xi Zhou;Weiqing Yan\",\"doi\":\"10.1109/LSP.2024.3475357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing salient target detection methods tend to use a single-mirror segmentation strategy, which ignores feature hierarchy information in the frequency domain and lacks fine-grained correspondence. To address these challenges, we propose a new semantic progressive guidance network (SPGNet). To mine sufficient effective information, we propose the wavelet bidirectional focusing (WBF) module to aggregate sub-band features through a bidirectional wavelet transform and fuse them with low-level features to deepen the detail mining. We also introduce the Gaussian fusion complementary (GFC) module, which adopts Gaussian filtering technology to optimize the feature space and then efficiently extracts the contour information through enhanced feature processing. In addition, we propose a global correlation bootstrapping (GCB) module that constructs region-to-pixel correlations from a global perspective to achieve fine-grained correspondence. The proposed model achieves competitive results on a benchmark dataset.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10706626/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706626/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

现有的突出目标检测方法倾向于使用单镜分割策略,这种方法忽略了频域中的特征层次信息,缺乏细粒度的对应关系。为了应对这些挑战,我们提出了一种新的语义渐进引导网络(SPGNet)。为了挖掘足够的有效信息,我们提出了小波双向聚焦(WBF)模块,通过双向小波变换聚合子带特征,并与低层次特征融合,以深化细节挖掘。我们还引入了高斯融合补充(GFC)模块,该模块采用高斯滤波技术优化特征空间,然后通过增强特征处理高效提取轮廓信息。此外,我们还提出了全局相关性引导(GCB)模块,从全局角度构建区域到像素的相关性,实现细粒度对应。所提出的模型在基准数据集上取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semantic Progressive Guidance Network for RGB-D Mirror Segmentation
Existing salient target detection methods tend to use a single-mirror segmentation strategy, which ignores feature hierarchy information in the frequency domain and lacks fine-grained correspondence. To address these challenges, we propose a new semantic progressive guidance network (SPGNet). To mine sufficient effective information, we propose the wavelet bidirectional focusing (WBF) module to aggregate sub-band features through a bidirectional wavelet transform and fuse them with low-level features to deepen the detail mining. We also introduce the Gaussian fusion complementary (GFC) module, which adopts Gaussian filtering technology to optimize the feature space and then efficiently extracts the contour information through enhanced feature processing. In addition, we propose a global correlation bootstrapping (GCB) module that constructs region-to-pixel correlations from a global perspective to achieve fine-grained correspondence. The proposed model achieves competitive results on a benchmark dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1