利用极端物理冲击研究豆科植物硬种子的特性

IF 0.48 Q4 Physics and Astronomy Bulletin of the Russian Academy of Sciences: Physics Pub Date : 2024-10-14 DOI:10.1134/S1062873824707645
A. Yu. Belyaev, N. A. Kruglikov, I. V. Kochev, D. A. Krylova
{"title":"利用极端物理冲击研究豆科植物硬种子的特性","authors":"A. Yu. Belyaev,&nbsp;N. A. Kruglikov,&nbsp;I. V. Kochev,&nbsp;D. A. Krylova","doi":"10.1134/S1062873824707645","DOIUrl":null,"url":null,"abstract":"<p>Different physical impacts are used to overcome the hard-seededness of legumes. The germination of yellow melilot and meadow clover seeds is shown to grow after cryotreatment. In licorice and astragalus, germination increases only after treating their seeds with hydrostatic pressure. It is assumed that liquid oxygen stimulates the development of yellow melilot seedlings. The origin of licorice seeds is found to affect their deformation: resistance to deformation (hardening) is determined by the seed coat (in arid areas) or by cotyledons (if excess moisture).</p>","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 9","pages":"1423 - 1430"},"PeriodicalIF":0.4800,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Extreme Physical Impacts to Study Properties of Hard Seeds of Legume Plants\",\"authors\":\"A. Yu. Belyaev,&nbsp;N. A. Kruglikov,&nbsp;I. V. Kochev,&nbsp;D. A. Krylova\",\"doi\":\"10.1134/S1062873824707645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Different physical impacts are used to overcome the hard-seededness of legumes. The germination of yellow melilot and meadow clover seeds is shown to grow after cryotreatment. In licorice and astragalus, germination increases only after treating their seeds with hydrostatic pressure. It is assumed that liquid oxygen stimulates the development of yellow melilot seedlings. The origin of licorice seeds is found to affect their deformation: resistance to deformation (hardening) is determined by the seed coat (in arid areas) or by cotyledons (if excess moisture).</p>\",\"PeriodicalId\":504,\"journal\":{\"name\":\"Bulletin of the Russian Academy of Sciences: Physics\",\"volume\":\"88 9\",\"pages\":\"1423 - 1430\"},\"PeriodicalIF\":0.4800,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Russian Academy of Sciences: Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1062873824707645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Russian Academy of Sciences: Physics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1062873824707645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

利用不同的物理影响来克服豆科植物的硬籽性。经低温处理后,黄花菜和草地三叶草种子的发芽率有所提高。甘草和黄芪的种子只有在经过静水压处理后,发芽率才会提高。据推测,液氧会刺激黄花菜幼苗的生长。甘草种子的产地会影响其变形:抗变形(硬化)能力取决于种皮(在干旱地区)或子叶(如果水分过多)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Extreme Physical Impacts to Study Properties of Hard Seeds of Legume Plants

Different physical impacts are used to overcome the hard-seededness of legumes. The germination of yellow melilot and meadow clover seeds is shown to grow after cryotreatment. In licorice and astragalus, germination increases only after treating their seeds with hydrostatic pressure. It is assumed that liquid oxygen stimulates the development of yellow melilot seedlings. The origin of licorice seeds is found to affect their deformation: resistance to deformation (hardening) is determined by the seed coat (in arid areas) or by cotyledons (if excess moisture).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Russian Academy of Sciences: Physics
Bulletin of the Russian Academy of Sciences: Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
0.90
自引率
0.00%
发文量
251
期刊介绍: Bulletin of the Russian Academy of Sciences: Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It presents full-text articles (regular,  letters  to  the editor, reviews) with the most recent results in miscellaneous fields of physics and astronomy: nuclear physics, cosmic rays, condensed matter physics, plasma physics, optics and photonics, nanotechnologies, solar and astrophysics, physical applications in material sciences, life sciences, etc. Bulletin of the Russian Academy of Sciences: Physics  focuses on the most relevant multidisciplinary topics in natural sciences, both fundamental and applied. Manuscripts can be submitted in Russian and English languages and are subject to peer review. Accepted articles are usually combined in thematic issues on certain topics according to the journal editorial policy. Authors featured in the journal represent renowned scientific laboratories and institutes from different countries, including large international collaborations. There are globally recognized researchers among the authors: Nobel laureates and recipients of other awards, and members of national academies of sciences and international scientific societies.
期刊最新文献
Dynamics of the Rise of an Air Bubble in a Magnetic Fluid Shell inside a Magnetic Field Dynamics of Floating Droplets of a Magnetic Liquid in Glycerol in a Flat Channel under the Influence of a Magnetic Field Regularities and Mechanisms of Composition Influence on Magnetic and Nonlinear Electrical Characteristics of La–Sr Manganites with Combined Substitution for Manganese Using Vibrational Spectroscopy and Ab Initio Calculations to Study Hydrogen-Bonded Complexes in Aqueous Solutions of Acetylacetone Magneto-Optical Effect in Magnetic Emulsions with Deformable Submicrometer Droplets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1