利用基于隐马尔可夫模型的分类法分析韩国的能源需求模式

IF 1 4区 经济学 Q3 ECONOMICS Asian Economic Journal Pub Date : 2024-10-07 DOI:10.1111/asej.12338
Jaeyong Lee, Beom Seuk Hwang
{"title":"利用基于隐马尔可夫模型的分类法分析韩国的能源需求模式","authors":"Jaeyong Lee,&nbsp;Beom Seuk Hwang","doi":"10.1111/asej.12338","DOIUrl":null,"url":null,"abstract":"<p>Understanding energy demand patterns in the residential sector is crucial for improving energy efficiency through demand-side management. Load curve classification is a useful method for analyzing energy demand patterns. In this paper, we employ a hidden Markov model (HMM)-based classification to residential load curves in South Korea. We also investigate how the number of hidden states affects classification performance by allowing HMM to train with a different number of hidden states for each class. We compare our HMM-based method with several state-of-the-art models and find that it outperforms other competing models in multiple datasets. Additionally, we use the fitted HMM model to make inferences about the load curves, gaining deeper insights into energy demand patterns.</p>","PeriodicalId":45838,"journal":{"name":"Asian Economic Journal","volume":"38 3","pages":"404-428"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/asej.12338","citationCount":"0","resultStr":"{\"title\":\"Energy demand pattern analysis in South Korea using hidden Markov model-based classification\",\"authors\":\"Jaeyong Lee,&nbsp;Beom Seuk Hwang\",\"doi\":\"10.1111/asej.12338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding energy demand patterns in the residential sector is crucial for improving energy efficiency through demand-side management. Load curve classification is a useful method for analyzing energy demand patterns. In this paper, we employ a hidden Markov model (HMM)-based classification to residential load curves in South Korea. We also investigate how the number of hidden states affects classification performance by allowing HMM to train with a different number of hidden states for each class. We compare our HMM-based method with several state-of-the-art models and find that it outperforms other competing models in multiple datasets. Additionally, we use the fitted HMM model to make inferences about the load curves, gaining deeper insights into energy demand patterns.</p>\",\"PeriodicalId\":45838,\"journal\":{\"name\":\"Asian Economic Journal\",\"volume\":\"38 3\",\"pages\":\"404-428\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/asej.12338\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Economic Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/asej.12338\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Economic Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/asej.12338","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

了解住宅部门的能源需求模式对于通过需求侧管理提高能源效率至关重要。负荷曲线分类是分析能源需求模式的有效方法。在本文中,我们采用基于隐马尔可夫模型(HMM)的分类方法来分析韩国的住宅负荷曲线。我们还研究了隐藏状态的数量对分类性能的影响,允许 HMM 对每个类别使用不同数量的隐藏状态进行训练。我们将基于 HMM 的方法与几种最先进的模型进行了比较,发现它在多个数据集中的表现优于其他同类模型。此外,我们还利用拟合的 HMM 模型对负荷曲线进行推断,从而更深入地了解能源需求模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy demand pattern analysis in South Korea using hidden Markov model-based classification

Understanding energy demand patterns in the residential sector is crucial for improving energy efficiency through demand-side management. Load curve classification is a useful method for analyzing energy demand patterns. In this paper, we employ a hidden Markov model (HMM)-based classification to residential load curves in South Korea. We also investigate how the number of hidden states affects classification performance by allowing HMM to train with a different number of hidden states for each class. We compare our HMM-based method with several state-of-the-art models and find that it outperforms other competing models in multiple datasets. Additionally, we use the fitted HMM model to make inferences about the load curves, gaining deeper insights into energy demand patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
7.70%
发文量
19
期刊介绍: The Asian Economic Journal provides detailed coverage of a wide range of topics in economics relating to East Asia, including investigation of current research, international comparisons and country studies. It is a forum for debate amongst theorists, practitioners and researchers and publishes high-quality theoretical, empirical and policy orientated contributions. The Asian Economic Journal facilitates the exchange of information among researchers on a world-wide basis and offers a unique opportunity for economists to keep abreast of research on economics pertaining to East Asia.
期刊最新文献
Issue Information Issue Information Analysis of the transformation of demand willingness for housing reverse mortgages in China based on a scenario simulation experiment Energy demand pattern analysis in South Korea using hidden Markov model-based classification Tech wars: Distributional consequences of global tech rivalry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1