超声波处理和温度对两种豇豆水合过程和硬度的影响

IF 2.7 3区 农林科学 Q3 ENGINEERING, CHEMICAL Journal of Food Process Engineering Pub Date : 2024-10-07 DOI:10.1111/jfpe.14731
Sholeh Rostamirad, K. G. Duodu, J. P. Meyer, M. Sharifpur
{"title":"超声波处理和温度对两种豇豆水合过程和硬度的影响","authors":"Sholeh Rostamirad,&nbsp;K. G. Duodu,&nbsp;J. P. Meyer,&nbsp;M. Sharifpur","doi":"10.1111/jfpe.14731","DOIUrl":null,"url":null,"abstract":"<p>Ultrasonication deployment provides a green and non-thermal option to traditional hydrothermal treatment. This study presents the impact of ultrasonication and soaking temperatures (30 and 50°C) on the water uptake and hardness of two cowpea types under increasing soaking times (15–240 min). Moisture content and hardness of the studied samples were measured using standard test methods and instruments. An increase in soaking temperature and the use of ultrasonication enhanced water uptake and reduced hardness. Ultrasonication improved mass transfer, which enhanced the diffusion of water uptake. The samples' water uptake and softening characteristics were significantly modeled with high accuracy (<i>R</i><sup>2</sup> = 0.99) using sigmoidal and first-order kinetics equations, respectively. The impact of sonication was found to be more significant at 30°C soaking of the studied cowpeas as the soaking time increased. This work justified using ultrasonication as a green technique to enhance the softening of cowpeas.</p>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"47 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfpe.14731","citationCount":"0","resultStr":"{\"title\":\"Effect of ultrasonication and temperature on hydration process and hardness of two cowpea types\",\"authors\":\"Sholeh Rostamirad,&nbsp;K. G. Duodu,&nbsp;J. P. Meyer,&nbsp;M. Sharifpur\",\"doi\":\"10.1111/jfpe.14731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultrasonication deployment provides a green and non-thermal option to traditional hydrothermal treatment. This study presents the impact of ultrasonication and soaking temperatures (30 and 50°C) on the water uptake and hardness of two cowpea types under increasing soaking times (15–240 min). Moisture content and hardness of the studied samples were measured using standard test methods and instruments. An increase in soaking temperature and the use of ultrasonication enhanced water uptake and reduced hardness. Ultrasonication improved mass transfer, which enhanced the diffusion of water uptake. The samples' water uptake and softening characteristics were significantly modeled with high accuracy (<i>R</i><sup>2</sup> = 0.99) using sigmoidal and first-order kinetics equations, respectively. The impact of sonication was found to be more significant at 30°C soaking of the studied cowpeas as the soaking time increased. This work justified using ultrasonication as a green technique to enhance the softening of cowpeas.</p>\",\"PeriodicalId\":15932,\"journal\":{\"name\":\"Journal of Food Process Engineering\",\"volume\":\"47 10\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfpe.14731\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Process Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14731\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14731","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

超声波处理为传统的水热处理提供了一种绿色、非热处理的选择。本研究介绍了在浸泡时间增加(15-240 分钟)的情况下,超声波处理和浸泡温度(30 和 50°C)对两种豇豆的吸水率和硬度的影响。采用标准测试方法和仪器测量了所研究样品的水分含量和硬度。提高浸泡温度和使用超声波处理提高了吸水率,降低了硬度。超声波处理改善了传质,从而增强了吸水的扩散性。样品的吸水和软化特性分别用西格玛和一阶动力学方程进行了显著建模,准确度很高(R2 = 0.99)。研究发现,随着浸泡时间的延长,在 30°C 下浸泡所研究的豇豆时,超声波的影响更为显著。这项工作证明,使用超声波作为一种绿色技术可提高豇豆的软化程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of ultrasonication and temperature on hydration process and hardness of two cowpea types

Ultrasonication deployment provides a green and non-thermal option to traditional hydrothermal treatment. This study presents the impact of ultrasonication and soaking temperatures (30 and 50°C) on the water uptake and hardness of two cowpea types under increasing soaking times (15–240 min). Moisture content and hardness of the studied samples were measured using standard test methods and instruments. An increase in soaking temperature and the use of ultrasonication enhanced water uptake and reduced hardness. Ultrasonication improved mass transfer, which enhanced the diffusion of water uptake. The samples' water uptake and softening characteristics were significantly modeled with high accuracy (R2 = 0.99) using sigmoidal and first-order kinetics equations, respectively. The impact of sonication was found to be more significant at 30°C soaking of the studied cowpeas as the soaking time increased. This work justified using ultrasonication as a green technique to enhance the softening of cowpeas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Process Engineering
Journal of Food Process Engineering 工程技术-工程:化工
CiteScore
5.70
自引率
10.00%
发文量
259
审稿时长
2 months
期刊介绍: This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.
期刊最新文献
Cost Estimation for the Preservation of Selected Food/Crop Products With Ozone Application of Computational Intelligence to Determine the Effect of Different Shear Bar Positions on Chopping Length and Specific Cutting Energy Consumption in the Chopping of Silage Sorghum Modelling and Optimizing the Integrity of an Automated Vegetable Leaf Packaging Machine Diagnosing Fungal Infection in Wheat Kernels by Integrating Spectroscopic Technology and Digital Color Imaging System: Artificial Neural Network, Principal Component Analysis and Correlation Feature Selection Techniques Investigation of Cross-Sectional Characteristics of Internal Meshing Screw Mixing Flow Field for Dough Paste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1