自上而下和自下而上对成熟桉树林生态系统呼吸作用的估算之间的调和

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Geophysical Research: Biogeosciences Pub Date : 2024-10-13 DOI:10.1029/2024JG008064
N. J. Noh, A. A. Renchon, J. Knauer, V. Haverd, J. Li, A. Griebel, C. V. M. Barton, J. Yang, D. Sihi, S. K. Arndt, E. A. Davidson, M. G. Tjoelker, E. Pendall
{"title":"自上而下和自下而上对成熟桉树林生态系统呼吸作用的估算之间的调和","authors":"N. J. Noh,&nbsp;A. A. Renchon,&nbsp;J. Knauer,&nbsp;V. Haverd,&nbsp;J. Li,&nbsp;A. Griebel,&nbsp;C. V. M. Barton,&nbsp;J. Yang,&nbsp;D. Sihi,&nbsp;S. K. Arndt,&nbsp;E. A. Davidson,&nbsp;M. G. Tjoelker,&nbsp;E. Pendall","doi":"10.1029/2024JG008064","DOIUrl":null,"url":null,"abstract":"<p>Ecosystem respiration (R<sub>eco</sub>) arises from interacting autotrophic and heterotrophic processes constrained by distinct drivers. Here, we evaluated up-scaling of observed components of R<sub>eco</sub> in a mature eucalypt forest in southeast Australia and assessed whether a land surface model adequately represented all the fluxes and their seasonal temperature responses. We measured respiration from soil (R<sub>soil</sub>), heterotrophic soil microbes (R<sub>h</sub>), roots (R<sub>root</sub>), and stems (R<sub>stem</sub>) in 2018–2019. R<sub>eco</sub> and its components were simulated using the CABLE–POP (Community Atmosphere-Biosphere Land Exchange–Population Orders Physiology) land surface model, constrained by eddy covariance and chamber measurements and enabled with a newly implemented Dual Arrhenius and Michaelis-Menten (DAMM) module for soil organic matter decomposition. Eddy-covariance based R<sub>eco</sub> (R<sub>eco.eddy</sub>, 1,439 g C m<sup>−2</sup> y<sup>−1</sup>) was slightly higher than the sum of the respiration components (R<sub>eco.sum,</sub> 1,295 g C m<sup>−2</sup> y<sup>−1</sup>) and simulated R<sub>eco</sub> (1,297 g C m<sup>−2</sup> y<sup>−1</sup>). The largest mean contribution to R<sub>eco</sub> was from R<sub>soil</sub> (64%) across seasons. The measured contributions of R<sub>h</sub> (49%), R<sub>root</sub> (15%), and R<sub>stem</sub> (22%) to R<sub>eco.sum</sub> were very close to model outputs of 46%, 11%, and 22%, respectively. The modeled R<sub>h</sub> was highly correlated with measured R<sub>h</sub> (R<sup>2</sup> = 0.66, RMSE = 0.61), empirically validating the DAMM module. The apparent temperature sensitivities (Q<sub>10</sub>) of R<sub>eco</sub> were 2.22 for R<sub>eco.sum</sub>, 2.15 for R<sub>eco.eddy</sub>, and 1.57 for CABLE-POP. This research demonstrated that bottom-up respiration component measurements can be successfully scaled to eddy covariance-based R<sub>eco</sub> and help to better constrain the magnitude of individual respiration components as well as their temperature sensitivities in land surface models.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008064","citationCount":"0","resultStr":"{\"title\":\"Reconciling Top-Down and Bottom-Up Estimates of Ecosystem Respiration in a Mature Eucalypt Forest\",\"authors\":\"N. J. Noh,&nbsp;A. A. Renchon,&nbsp;J. Knauer,&nbsp;V. Haverd,&nbsp;J. Li,&nbsp;A. Griebel,&nbsp;C. V. M. Barton,&nbsp;J. Yang,&nbsp;D. Sihi,&nbsp;S. K. Arndt,&nbsp;E. A. Davidson,&nbsp;M. G. Tjoelker,&nbsp;E. Pendall\",\"doi\":\"10.1029/2024JG008064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecosystem respiration (R<sub>eco</sub>) arises from interacting autotrophic and heterotrophic processes constrained by distinct drivers. Here, we evaluated up-scaling of observed components of R<sub>eco</sub> in a mature eucalypt forest in southeast Australia and assessed whether a land surface model adequately represented all the fluxes and their seasonal temperature responses. We measured respiration from soil (R<sub>soil</sub>), heterotrophic soil microbes (R<sub>h</sub>), roots (R<sub>root</sub>), and stems (R<sub>stem</sub>) in 2018–2019. R<sub>eco</sub> and its components were simulated using the CABLE–POP (Community Atmosphere-Biosphere Land Exchange–Population Orders Physiology) land surface model, constrained by eddy covariance and chamber measurements and enabled with a newly implemented Dual Arrhenius and Michaelis-Menten (DAMM) module for soil organic matter decomposition. Eddy-covariance based R<sub>eco</sub> (R<sub>eco.eddy</sub>, 1,439 g C m<sup>−2</sup> y<sup>−1</sup>) was slightly higher than the sum of the respiration components (R<sub>eco.sum,</sub> 1,295 g C m<sup>−2</sup> y<sup>−1</sup>) and simulated R<sub>eco</sub> (1,297 g C m<sup>−2</sup> y<sup>−1</sup>). The largest mean contribution to R<sub>eco</sub> was from R<sub>soil</sub> (64%) across seasons. The measured contributions of R<sub>h</sub> (49%), R<sub>root</sub> (15%), and R<sub>stem</sub> (22%) to R<sub>eco.sum</sub> were very close to model outputs of 46%, 11%, and 22%, respectively. The modeled R<sub>h</sub> was highly correlated with measured R<sub>h</sub> (R<sup>2</sup> = 0.66, RMSE = 0.61), empirically validating the DAMM module. The apparent temperature sensitivities (Q<sub>10</sub>) of R<sub>eco</sub> were 2.22 for R<sub>eco.sum</sub>, 2.15 for R<sub>eco.eddy</sub>, and 1.57 for CABLE-POP. This research demonstrated that bottom-up respiration component measurements can be successfully scaled to eddy covariance-based R<sub>eco</sub> and help to better constrain the magnitude of individual respiration components as well as their temperature sensitivities in land surface models.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008064\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008064","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生态系统呼吸作用(Reco)产生于受不同驱动因素制约的相互作用的自养和异养过程。在此,我们对澳大利亚东南部一片成熟桉树林中观测到的呼吸作用成分进行了放大评估,并评估了地表模型是否充分代表了所有通量及其季节性温度响应。我们测量了 2018-2019 年土壤(Rsoil)、异养土壤微生物(Rh)、根(Rroot)和茎(Rstem)的呼吸作用。Reco及其组成部分是利用CABLE-POP(社区大气-生物圈土地交换-种群订单生理学)地表模型模拟的,该模型以涡度协方差和室测量为约束,并启用了新实施的用于土壤有机物分解的双阿伦尼斯和迈克尔斯-门顿(DAMM)模块。基于涡度协方差的 Reco(Reco.eddy,1,439 g C m-2 y-1)略高于呼吸作用成分的总和(Reco.sum,1,295 g C m-2 y-1)和模拟 Reco(1,297 g C m-2 y-1)。Rsoil(64%)对各季节 Reco 的平均贡献最大。测得的 Rh(49%)、Rroot(15%)和 Rstem(22%)对 Reco.sum 的贡献与模型输出非常接近,分别为 46%、11% 和 22%。建模的 Rh 与测量的 Rh 高度相关(R2 = 0.66,RMSE = 0.61),从经验上验证了 DAMM 模块。Reco.sum的表观温度敏感度(Q10)为2.22,Reco.eddy为2.15,CABLE-POP为1.57。这项研究表明,自下而上的呼吸分量测量可以成功地扩展到基于涡协方差的 Reco,并有助于更好地约束单个呼吸分量的大小及其在陆表模式中的温度敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconciling Top-Down and Bottom-Up Estimates of Ecosystem Respiration in a Mature Eucalypt Forest

Ecosystem respiration (Reco) arises from interacting autotrophic and heterotrophic processes constrained by distinct drivers. Here, we evaluated up-scaling of observed components of Reco in a mature eucalypt forest in southeast Australia and assessed whether a land surface model adequately represented all the fluxes and their seasonal temperature responses. We measured respiration from soil (Rsoil), heterotrophic soil microbes (Rh), roots (Rroot), and stems (Rstem) in 2018–2019. Reco and its components were simulated using the CABLE–POP (Community Atmosphere-Biosphere Land Exchange–Population Orders Physiology) land surface model, constrained by eddy covariance and chamber measurements and enabled with a newly implemented Dual Arrhenius and Michaelis-Menten (DAMM) module for soil organic matter decomposition. Eddy-covariance based Reco (Reco.eddy, 1,439 g C m−2 y−1) was slightly higher than the sum of the respiration components (Reco.sum, 1,295 g C m−2 y−1) and simulated Reco (1,297 g C m−2 y−1). The largest mean contribution to Reco was from Rsoil (64%) across seasons. The measured contributions of Rh (49%), Rroot (15%), and Rstem (22%) to Reco.sum were very close to model outputs of 46%, 11%, and 22%, respectively. The modeled Rh was highly correlated with measured Rh (R2 = 0.66, RMSE = 0.61), empirically validating the DAMM module. The apparent temperature sensitivities (Q10) of Reco were 2.22 for Reco.sum, 2.15 for Reco.eddy, and 1.57 for CABLE-POP. This research demonstrated that bottom-up respiration component measurements can be successfully scaled to eddy covariance-based Reco and help to better constrain the magnitude of individual respiration components as well as their temperature sensitivities in land surface models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
期刊最新文献
Patterns and Drivers of CO2 and CH4 Fluxes in an Urbanized River Network and Their Response to Restoration Influence of Forest Cover Loss on Land Surface Temperature Differs by Drivers in China Validation of TROPOMI SIF Products With Improved Geolocation Match Between In Situ and Satellite Measurements Afforestation Reduces Deep Soil Carbon Sequestration in Semiarid Regions: Lessons From Variations of Soil Water and Carbon Along Afforestation Stages in China's Loess Plateau Limited Organic Carbon Burial by the Rusty Carbon Sink in Swedish Fjord Sediments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1