考虑渗透率时变因素的核壳混凝系统深度剖面控制数值模拟研究

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geofluids Pub Date : 2024-10-15 DOI:10.1155/2024/5030111
Zhaobo Sun, Shuchun Cao, Gongchang Wang, Xiaofei Jia, Guoqing Ning
{"title":"考虑渗透率时变因素的核壳混凝系统深度剖面控制数值模拟研究","authors":"Zhaobo Sun,&nbsp;Shuchun Cao,&nbsp;Gongchang Wang,&nbsp;Xiaofei Jia,&nbsp;Guoqing Ning","doi":"10.1155/2024/5030111","DOIUrl":null,"url":null,"abstract":"<p>The coring data in high water-cut oilfields indicates that the reservoir permeability will change continuously with water flooding, while the existing reservoir numerical simulation software cannot consider the time-varying phenomenon of permeability. With the enhancement of reservoir heterogeneity, the near-wellbore profile control fails to stabilize the oil production and control the water cut. The in-depth profile control has been widely used in oilfields as a new technology, and the types of profile control agents are diverse, with a complex mechanism that cannot be effectively described by the existing conventional numerical simulation software. Considering these two phenomena comprehensively, a new three-dimensional, three-phase, six-component mathematical model that can take into account the time-varying phenomenon of reservoir permeability is proposed for a new kind of in-depth profile control system, namely, the core–shell coagulation system, and an integrated numerical simulation software is developed. The mechanism of the in-depth profile control system can be perfectly demonstrated in the simulator with time-variation of permeability. The results of sensitivity analysis show that the effect is influenced by three factors: the mix slug injecting concentration, the coagulant aid slug volume, and the concentration of the suspension dispersing agent.</p>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5030111","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation Study on In-Depth Profile Control of Core–Shell Coagulation System Considering the Time-Variation of Permeability\",\"authors\":\"Zhaobo Sun,&nbsp;Shuchun Cao,&nbsp;Gongchang Wang,&nbsp;Xiaofei Jia,&nbsp;Guoqing Ning\",\"doi\":\"10.1155/2024/5030111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coring data in high water-cut oilfields indicates that the reservoir permeability will change continuously with water flooding, while the existing reservoir numerical simulation software cannot consider the time-varying phenomenon of permeability. With the enhancement of reservoir heterogeneity, the near-wellbore profile control fails to stabilize the oil production and control the water cut. The in-depth profile control has been widely used in oilfields as a new technology, and the types of profile control agents are diverse, with a complex mechanism that cannot be effectively described by the existing conventional numerical simulation software. Considering these two phenomena comprehensively, a new three-dimensional, three-phase, six-component mathematical model that can take into account the time-varying phenomenon of reservoir permeability is proposed for a new kind of in-depth profile control system, namely, the core–shell coagulation system, and an integrated numerical simulation software is developed. The mechanism of the in-depth profile control system can be perfectly demonstrated in the simulator with time-variation of permeability. The results of sensitivity analysis show that the effect is influenced by three factors: the mix slug injecting concentration, the coagulant aid slug volume, and the concentration of the suspension dispersing agent.</p>\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5030111\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5030111\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5030111","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

高切水油田的取芯数据表明,油藏渗透率会随水淹而不断变化,而现有的油藏数值模拟软件无法考虑渗透率的时变现象。随着油藏异质性的增强,近井筒剖面控制无法稳定产油量和控制断水。深度剖面控制作为一项新技术已在油田得到广泛应用,剖面控制剂种类繁多,机理复杂,现有常规数值模拟软件无法有效描述。综合考虑这两种现象,针对一种新型的深度剖面控制体系--核壳凝固体系,提出了一种能够考虑油藏渗透率时变现象的新型三维、三相、六分量数学模型,并开发了综合数值模拟软件。在渗透率时变的模拟器中,深度剖面控制系统的机理得以完美展现。灵敏度分析结果表明,其效果受三个因素的影响:混合蛞蝓注入浓度、助凝剂蛞蝓体积和悬浮分散剂浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation Study on In-Depth Profile Control of Core–Shell Coagulation System Considering the Time-Variation of Permeability

The coring data in high water-cut oilfields indicates that the reservoir permeability will change continuously with water flooding, while the existing reservoir numerical simulation software cannot consider the time-varying phenomenon of permeability. With the enhancement of reservoir heterogeneity, the near-wellbore profile control fails to stabilize the oil production and control the water cut. The in-depth profile control has been widely used in oilfields as a new technology, and the types of profile control agents are diverse, with a complex mechanism that cannot be effectively described by the existing conventional numerical simulation software. Considering these two phenomena comprehensively, a new three-dimensional, three-phase, six-component mathematical model that can take into account the time-varying phenomenon of reservoir permeability is proposed for a new kind of in-depth profile control system, namely, the core–shell coagulation system, and an integrated numerical simulation software is developed. The mechanism of the in-depth profile control system can be perfectly demonstrated in the simulator with time-variation of permeability. The results of sensitivity analysis show that the effect is influenced by three factors: the mix slug injecting concentration, the coagulant aid slug volume, and the concentration of the suspension dispersing agent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geofluids
Geofluids 地学-地球化学与地球物理
CiteScore
2.80
自引率
17.60%
发文量
835
期刊介绍: Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines. Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.
期刊最新文献
Numerical Simulation Study on In-Depth Profile Control of Core–Shell Coagulation System Considering the Time-Variation of Permeability Two-Phase Relative Permeability Curves of Bingham Heavy Oil Under Different Types of Wettability: A Theoretical Model Study on Resistance Loss of Fly Ash Slurry Multistage High-Pressure Grouting Pipeline Based on Fluent Hydrothermal Signatures Discovered in Outcropping Rocks of the Los Humeros Geothermal Field (Mexico): A Geochemometric Exploration Case Study Influence of Permeable Wellbore on Formation Testing While Drilling and Mobility Inversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1