{"title":"保角相关爱因斯坦度量的间隙现象","authors":"Josef Šilhan, Jan Gregorovič","doi":"10.1112/blms.13128","DOIUrl":null,"url":null,"abstract":"<p>We determine the submaximal dimensions of the spaces of almost Einstein scales and normal conformal Killing fields for connected conformal manifolds. The results depend on the signature and dimension <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> of the conformally nonflat conformal manifold. In definite signature, these two dimensions are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n-3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfrac>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>4</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <annotation>$\\frac{(n\\;-\\;4)(n\\;-\\;3)}{2}$</annotation>\n </semantics></math>, respectively. In Lorentzian signature, these two dimensions are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n-2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfrac>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>3</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <annotation>$\\frac{(n\\;-\\;3)(n\\;-\\;2)}{2}$</annotation>\n </semantics></math>, respectively. In the remaining signatures, these two dimensions are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n-1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mfrac>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>2</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mspace></mspace>\n <mo>−</mo>\n <mspace></mspace>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <annotation>$\\frac{(n\\;-\\;2)(n\\;-\\;1)}{2}$</annotation>\n </semantics></math>, respectively. This upper bound is sharp and to realize examples of submaximal dimensions, we first provide them directly in dimension 4. In higher dimensions, we construct the submaximal examples as the (warped) product of the (pseudo)-Euclidean base of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$n-4$</annotation>\n </semantics></math> with one of the 4-dimensional submaximal examples.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3209-3228"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The gap phenomenon for conformally related Einstein metrics\",\"authors\":\"Josef Šilhan, Jan Gregorovič\",\"doi\":\"10.1112/blms.13128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the submaximal dimensions of the spaces of almost Einstein scales and normal conformal Killing fields for connected conformal manifolds. The results depend on the signature and dimension <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> of the conformally nonflat conformal manifold. In definite signature, these two dimensions are at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n-3$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>4</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <annotation>$\\\\frac{(n\\\\;-\\\\;4)(n\\\\;-\\\\;3)}{2}$</annotation>\\n </semantics></math>, respectively. In Lorentzian signature, these two dimensions are at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n-2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>3</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <annotation>$\\\\frac{(n\\\\;-\\\\;3)(n\\\\;-\\\\;2)}{2}$</annotation>\\n </semantics></math>, respectively. In the remaining signatures, these two dimensions are at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n-1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>2</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mspace></mspace>\\n <mo>−</mo>\\n <mspace></mspace>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <annotation>$\\\\frac{(n\\\\;-\\\\;2)(n\\\\;-\\\\;1)}{2}$</annotation>\\n </semantics></math>, respectively. This upper bound is sharp and to realize examples of submaximal dimensions, we first provide them directly in dimension 4. In higher dimensions, we construct the submaximal examples as the (warped) product of the (pseudo)-Euclidean base of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$n-4$</annotation>\\n </semantics></math> with one of the 4-dimensional submaximal examples.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 10\",\"pages\":\"3209-3228\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13128\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13128","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们确定了连通共形流形的近爱因斯坦尺度空间和法共形基林场的次极限尺寸。结果取决于共形非平坦共形流形的签名和维数 n $n$。在定符号中,这两个维度分别最多为 n - 3 $n-3$ 和 ( n - 4 ) ( n - 3 ) 2 $\frac{(n\;-\;4)(n\;-\;3)}{2}$ 。在洛伦兹签名中,这两个维度分别最多为 n - 2 $n-2$ 和 ( n - 3 ) ( n - 2 ) 2 $\frac{(n\;-\;3)(n\;-\;2)}{2}$ 。在其余的签名中,这两个维度分别最多为 n - 1 $n-1$ 和 ( n - 2 ) ( n - 1 ) 2 $\frac{(n\;-\;2)(n\;-\;1)}{2}$ 。这个上界很尖锐,为了实现次极限维数的例子,我们首先直接提供维数 4 的例子。在更高维度中,我们将次极值范例构建为 n - 4 维 $n-4$ 的(伪)欧几里得基与其中一个 4 维次极值范例的(扭曲)乘积。
The gap phenomenon for conformally related Einstein metrics
We determine the submaximal dimensions of the spaces of almost Einstein scales and normal conformal Killing fields for connected conformal manifolds. The results depend on the signature and dimension of the conformally nonflat conformal manifold. In definite signature, these two dimensions are at most and , respectively. In Lorentzian signature, these two dimensions are at most and , respectively. In the remaining signatures, these two dimensions are at most and , respectively. This upper bound is sharp and to realize examples of submaximal dimensions, we first provide them directly in dimension 4. In higher dimensions, we construct the submaximal examples as the (warped) product of the (pseudo)-Euclidean base of dimension with one of the 4-dimensional submaximal examples.