大型队列数据协调协议

Maja Neidhart, Rikka Kjelkenes, Karina Jansone, Barbora Rehák Bučková, Nathalie Holz, Frauke Nees, Henrik Walter, Gunter Schumann, Michael A. Rapp, Tobias Banaschewski, Emanuel Schwarz, Andre Marquand, on behalf of the environMENTAL consortium
{"title":"大型队列数据协调协议","authors":"Maja Neidhart, Rikka Kjelkenes, Karina Jansone, Barbora Rehák Bučková, Nathalie Holz, Frauke Nees, Henrik Walter, Gunter Schumann, Michael A. Rapp, Tobias Banaschewski, Emanuel Schwarz, Andre Marquand, on behalf of the environMENTAL consortium","doi":"10.1038/s44220-024-00315-0","DOIUrl":null,"url":null,"abstract":"This Comment presents a high-level protocol for data harmonization within large cohorts, in which it postulates four main steps including (1) expert review, (2) pre-statistical harmonization, (3) statistical harmonization, and (4) validation.","PeriodicalId":74247,"journal":{"name":"Nature mental health","volume":"2 10","pages":"1134-1137"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44220-024-00315-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A protocol for data harmonization in large cohorts\",\"authors\":\"Maja Neidhart, Rikka Kjelkenes, Karina Jansone, Barbora Rehák Bučková, Nathalie Holz, Frauke Nees, Henrik Walter, Gunter Schumann, Michael A. Rapp, Tobias Banaschewski, Emanuel Schwarz, Andre Marquand, on behalf of the environMENTAL consortium\",\"doi\":\"10.1038/s44220-024-00315-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Comment presents a high-level protocol for data harmonization within large cohorts, in which it postulates four main steps including (1) expert review, (2) pre-statistical harmonization, (3) statistical harmonization, and (4) validation.\",\"PeriodicalId\":74247,\"journal\":{\"name\":\"Nature mental health\",\"volume\":\"2 10\",\"pages\":\"1134-1137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44220-024-00315-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature mental health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44220-024-00315-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature mental health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44220-024-00315-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本评论提出了在大型队列中统一数据的高级协议,其中假定了四个主要步骤,包括 (1) 专家审查、(2) 统计前统一、(3) 统计统一和 (4) 验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A protocol for data harmonization in large cohorts
This Comment presents a high-level protocol for data harmonization within large cohorts, in which it postulates four main steps including (1) expert review, (2) pre-statistical harmonization, (3) statistical harmonization, and (4) validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving refugee mental health through resilience and research A health-equity framework for tailoring digital non-pharmacological interventions in aging Strengthening autonomy in mental health care through a relational approach A dual-continuum framework to evaluate climate change impacts on mental health New insights from gene expression patterns on the neurobiological basis of risky behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1