通过烷基链调谐实现溶解鞘重组,有望开发瘦电解质锂离子电池

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-10-15 DOI:10.1021/acsenergylett.4c02049
Zixiong Shi, Simil Thomas, Dong Guo, Zhengnan Tian, Zhiming Zhao, Yizhou Wang, Abdul-Hamid Emwas, Nimer Wehbe, Georgian Melinte, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef
{"title":"通过烷基链调谐实现溶解鞘重组,有望开发瘦电解质锂离子电池","authors":"Zixiong Shi, Simil Thomas, Dong Guo, Zhengnan Tian, Zhiming Zhao, Yizhou Wang, Abdul-Hamid Emwas, Nimer Wehbe, Georgian Melinte, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef","doi":"10.1021/acsenergylett.4c02049","DOIUrl":null,"url":null,"abstract":"Sparsely solvating electrolyte (SSE), which can achieve a quasi-solid-phase sulfur reaction path, stands out as a promising strategy to alleviate the dependence on electrolyte usage and construct lean-electrolyte lithium–sulfur (Li–S) batteries. Nonetheless, its formation relies upon a high dosage of salt and diluent, thereby leading to increased electrolyte cost. To this end, we herein customize a localized SSE (LSSE) featuring a low ratio of salt-to-solvent and diluent-to-solvent through alkyl chain tuning. A multimodal 2D nuclear magnetic resonance technique is developed to unveil the Li-ion solvation sheath reorganization, which is crucial for studying the coordination and dynamics in liquid electrolytes. LSSE affords an anion-derived solid electrolyte interface and effective restriction of the shuttling effect; hence, our Li–S batteries can sustain a steady operation under 4 μL mg<sub>S</sub><sup>–1</sup> and 3 mg cm<sup>–2</sup>. Our work opens a new avenue for advancing SSE design in the pursuit of pragmatic lean-electrolyte Li–S batteries.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries\",\"authors\":\"Zixiong Shi, Simil Thomas, Dong Guo, Zhengnan Tian, Zhiming Zhao, Yizhou Wang, Abdul-Hamid Emwas, Nimer Wehbe, Georgian Melinte, Osman M. Bakr, Omar F. Mohammed, Husam N. Alshareef\",\"doi\":\"10.1021/acsenergylett.4c02049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparsely solvating electrolyte (SSE), which can achieve a quasi-solid-phase sulfur reaction path, stands out as a promising strategy to alleviate the dependence on electrolyte usage and construct lean-electrolyte lithium–sulfur (Li–S) batteries. Nonetheless, its formation relies upon a high dosage of salt and diluent, thereby leading to increased electrolyte cost. To this end, we herein customize a localized SSE (LSSE) featuring a low ratio of salt-to-solvent and diluent-to-solvent through alkyl chain tuning. A multimodal 2D nuclear magnetic resonance technique is developed to unveil the Li-ion solvation sheath reorganization, which is crucial for studying the coordination and dynamics in liquid electrolytes. LSSE affords an anion-derived solid electrolyte interface and effective restriction of the shuttling effect; hence, our Li–S batteries can sustain a steady operation under 4 μL mg<sub>S</sub><sup>–1</sup> and 3 mg cm<sup>–2</sup>. Our work opens a new avenue for advancing SSE design in the pursuit of pragmatic lean-electrolyte Li–S batteries.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c02049\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

稀溶解电解质(SSE)可实现准固相硫反应路径,是减轻对电解质用量的依赖和构建贫电解质锂硫(Li-S)电池的一种有前途的策略。然而,其形成依赖于高剂量的盐和稀释剂,从而导致电解液成本增加。为此,我们通过烷基链调整定制了一种局部 SSE(LSSE),其特点是盐与溶剂和稀释剂与溶剂的比例较低。我们开发了一种多模态二维核磁共振技术来揭示锂离子溶解鞘重组,这对于研究液态电解质中的配位和动力学至关重要。LSSE 提供了一个阴离子衍生的固体电解质界面,并有效限制了穿梭效应;因此,我们的锂-S 电池可以在 4 μL mgS-1 和 3 mg cm-2 的条件下保持稳定运行。我们的工作为推进固态电解质的设计、追求实用的贫电解质锂-S 电池开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries
Sparsely solvating electrolyte (SSE), which can achieve a quasi-solid-phase sulfur reaction path, stands out as a promising strategy to alleviate the dependence on electrolyte usage and construct lean-electrolyte lithium–sulfur (Li–S) batteries. Nonetheless, its formation relies upon a high dosage of salt and diluent, thereby leading to increased electrolyte cost. To this end, we herein customize a localized SSE (LSSE) featuring a low ratio of salt-to-solvent and diluent-to-solvent through alkyl chain tuning. A multimodal 2D nuclear magnetic resonance technique is developed to unveil the Li-ion solvation sheath reorganization, which is crucial for studying the coordination and dynamics in liquid electrolytes. LSSE affords an anion-derived solid electrolyte interface and effective restriction of the shuttling effect; hence, our Li–S batteries can sustain a steady operation under 4 μL mgS–1 and 3 mg cm–2. Our work opens a new avenue for advancing SSE design in the pursuit of pragmatic lean-electrolyte Li–S batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Solvation Sheath Reorganization by Alkyl Chain Tuning Promises Lean-Electrolyte Li–S Batteries Chemomechanical Pairing of Alloy Anodes and Solid-State Electrolytes Consequences of Annealing on Metal–Insulator–Semiconductor Water Splitting Photoelectrocatalysts Issue Editorial Masthead Emerging All-Solid-State Lithium–Sulfur Batteries: Holy Grails for Future Secondary Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1