平滑色散在物理上是适当的:评估和修正 D4 分散模型

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-15 DOI:10.1021/acs.jpclett.4c02653
Nikolay V. Tkachenko, Linus Bjarne Dittmer, Rebecca Tomann, Martin Head-Gordon
{"title":"平滑色散在物理上是适当的:评估和修正 D4 分散模型","authors":"Nikolay V. Tkachenko, Linus Bjarne Dittmer, Rebecca Tomann, Martin Head-Gordon","doi":"10.1021/acs.jpclett.4c02653","DOIUrl":null,"url":null,"abstract":"The addition of dispersion corrections to density functionals is essential for accurate energy and geometry predictions. Among them, the D4 scheme is popular due to its low computational cost and high accuracy. However, due to its design, the D4 correction can occasionally lead to anomalies, such as unphysical curvature and bumps in the potential energy surface. We find these anomalies are common in the D4 model, although observable consequences are rarer than in the D3 model for reasons we explain. Nevertheless, we uncover instances of unphysical local minima and stationary points with the D4 scheme and propose two solutions that yield smoother dispersion energy as a function of nuclear position. One is trivial to implement, based on a smoother reparametrization of Gaussian weighting (D4S) to find the effective coordination number. The other replaces Gaussian weighting with soft linear interpolation (D4SL). These new approaches usually remove artificial extremum points, while maintaining accuracy.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth Dispersion Is Physically Appropriate: Assessing and Amending the D4 Dispersion Model\",\"authors\":\"Nikolay V. Tkachenko, Linus Bjarne Dittmer, Rebecca Tomann, Martin Head-Gordon\",\"doi\":\"10.1021/acs.jpclett.4c02653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The addition of dispersion corrections to density functionals is essential for accurate energy and geometry predictions. Among them, the D4 scheme is popular due to its low computational cost and high accuracy. However, due to its design, the D4 correction can occasionally lead to anomalies, such as unphysical curvature and bumps in the potential energy surface. We find these anomalies are common in the D4 model, although observable consequences are rarer than in the D3 model for reasons we explain. Nevertheless, we uncover instances of unphysical local minima and stationary points with the D4 scheme and propose two solutions that yield smoother dispersion energy as a function of nuclear position. One is trivial to implement, based on a smoother reparametrization of Gaussian weighting (D4S) to find the effective coordination number. The other replaces Gaussian weighting with soft linear interpolation (D4SL). These new approaches usually remove artificial extremum points, while maintaining accuracy.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02653\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02653","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在密度函数中加入弥散修正对于准确预测能量和几何形状至关重要。其中,D4 方案因其计算成本低、精度高而广受欢迎。然而,由于其设计原因,D4 修正偶尔会导致反常现象,例如势能面上的非物理曲率和凹凸。我们发现这些反常现象在 D4 模型中很常见,尽管由于我们解释的原因,可观测到的后果比 D3 模型要少。尽管如此,我们还是发现了 D4 方案中的非物理局部极小值和静止点,并提出了两种解决方案,它们能产生更平滑的作为核位置函数的色散能。其中一个方案很容易实现,它基于对高斯权重(D4S)进行更平滑的重新参数化,以找到有效配位数。另一种方法是用软线性插值(D4SL)取代高斯加权。这些新方法通常可以消除人为的极值点,同时保持精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smooth Dispersion Is Physically Appropriate: Assessing and Amending the D4 Dispersion Model
The addition of dispersion corrections to density functionals is essential for accurate energy and geometry predictions. Among them, the D4 scheme is popular due to its low computational cost and high accuracy. However, due to its design, the D4 correction can occasionally lead to anomalies, such as unphysical curvature and bumps in the potential energy surface. We find these anomalies are common in the D4 model, although observable consequences are rarer than in the D3 model for reasons we explain. Nevertheless, we uncover instances of unphysical local minima and stationary points with the D4 scheme and propose two solutions that yield smoother dispersion energy as a function of nuclear position. One is trivial to implement, based on a smoother reparametrization of Gaussian weighting (D4S) to find the effective coordination number. The other replaces Gaussian weighting with soft linear interpolation (D4SL). These new approaches usually remove artificial extremum points, while maintaining accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Bond Dissociation Energy of CO2 with Spectroscopic Accuracy Using State-to-State Resolved Threshold Fragment Yield Spectra. Environment- and Conformation-Induced Frequency Shifts of C-D Vibrational Stark Probes in NAD(P)H Cofactors. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. Rational Control of Maximum EMI/CPL Intensity and Wavelength of Bora[6]helicene via Polarity and Vibronic Effects. When a Twist Makes a Difference: Exploring PCET and ESIPT on a Nonplanar Hydrogen-Bonded Donor-Acceptor System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1