石墨烯上 GaN μ-Platelets 的选择性面积生长

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-10-06 DOI:10.1021/acs.cgd.4c0070810.1021/acs.cgd.4c00708
Jonathan Henriques*, Dyhia Tamsaout, Ludovic Largeau, Edmond Cambril, Lucie Valera, Gwénolé Jacopin, Maria Tchernycheva, Jean-Christophe Harmand, Joël Eymery and Christophe Durand*, 
{"title":"石墨烯上 GaN μ-Platelets 的选择性面积生长","authors":"Jonathan Henriques*,&nbsp;Dyhia Tamsaout,&nbsp;Ludovic Largeau,&nbsp;Edmond Cambril,&nbsp;Lucie Valera,&nbsp;Gwénolé Jacopin,&nbsp;Maria Tchernycheva,&nbsp;Jean-Christophe Harmand,&nbsp;Joël Eymery and Christophe Durand*,&nbsp;","doi":"10.1021/acs.cgd.4c0070810.1021/acs.cgd.4c00708","DOIUrl":null,"url":null,"abstract":"<p >We report the selective area growth of N-polar GaN μ-platelets on graphene by metal–organic vapor-phase epitaxy. In a first step, GaN nanowires grown by selective molecular beam epitaxy on patterned graphene arrays on SiO<sub>2</sub> are used as nucleation seeds. The initial radius of the graphene patches results in different optical and crystalline quality of the GaN μ-platelets due to different coalescence mechanisms. The use of large graphene patches (250 nm) with significant number of nanowire seeds promotes the growth selectivity on patterned graphene at the expense of the structural quality (presence of voids, stacking faults, dislocations, and inversion domains). On the contrary, the use of smaller patches (65 nm) allows to grow μ-platelets from a very limited seed number (&lt;3 nanowires) with a significantly reduced number of extended defects. These observations have been directly related to optical measurements by cathodoluminescence and high-resolution transmission electronic microscopy observations performed on the same μ-platelets for the different graphene patch radii (65, 90, 250 nm). The formation of defects is discussed and supported by nucleation, intra- and intercoalescence mechanisms.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Area Growth of GaN μ-Platelets on Graphene\",\"authors\":\"Jonathan Henriques*,&nbsp;Dyhia Tamsaout,&nbsp;Ludovic Largeau,&nbsp;Edmond Cambril,&nbsp;Lucie Valera,&nbsp;Gwénolé Jacopin,&nbsp;Maria Tchernycheva,&nbsp;Jean-Christophe Harmand,&nbsp;Joël Eymery and Christophe Durand*,&nbsp;\",\"doi\":\"10.1021/acs.cgd.4c0070810.1021/acs.cgd.4c00708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the selective area growth of N-polar GaN μ-platelets on graphene by metal–organic vapor-phase epitaxy. In a first step, GaN nanowires grown by selective molecular beam epitaxy on patterned graphene arrays on SiO<sub>2</sub> are used as nucleation seeds. The initial radius of the graphene patches results in different optical and crystalline quality of the GaN μ-platelets due to different coalescence mechanisms. The use of large graphene patches (250 nm) with significant number of nanowire seeds promotes the growth selectivity on patterned graphene at the expense of the structural quality (presence of voids, stacking faults, dislocations, and inversion domains). On the contrary, the use of smaller patches (65 nm) allows to grow μ-platelets from a very limited seed number (&lt;3 nanowires) with a significantly reduced number of extended defects. These observations have been directly related to optical measurements by cathodoluminescence and high-resolution transmission electronic microscopy observations performed on the same μ-platelets for the different graphene patch radii (65, 90, 250 nm). The formation of defects is discussed and supported by nucleation, intra- and intercoalescence mechanisms.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00708\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00708","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了通过金属有机气相外延技术在石墨烯上选择性地生长 N 极 GaN μ-platelets 的过程。第一步,在二氧化硅上的图案化石墨烯阵列上通过选择性分子束外延生长的 GaN 纳米线被用作成核种子。由于凝聚机制不同,石墨烯斑块的初始半径会导致 GaN μ-platelet 的光学和结晶质量不同。使用带有大量纳米线种子的大石墨烯斑块(250 nm)可提高图案化石墨烯的生长选择性,但会牺牲结构质量(存在空隙、堆积断层、位错和反转域)。相反,使用较小的斑块(65 nm)可以从非常有限的种子数量(3 根纳米线)中生长出微小板块,并显著减少扩展缺陷的数量。这些观察结果与阴极荧光光学测量和高分辨率透射电子显微镜观察结果直接相关,这些观察结果是在不同石墨烯贴片半径(65、90 和 250 nm)的相同 μ-platelet 上进行的。对缺陷的形成进行了讨论,并通过成核、内部和相互凝聚机制对缺陷的形成提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selective Area Growth of GaN μ-Platelets on Graphene

We report the selective area growth of N-polar GaN μ-platelets on graphene by metal–organic vapor-phase epitaxy. In a first step, GaN nanowires grown by selective molecular beam epitaxy on patterned graphene arrays on SiO2 are used as nucleation seeds. The initial radius of the graphene patches results in different optical and crystalline quality of the GaN μ-platelets due to different coalescence mechanisms. The use of large graphene patches (250 nm) with significant number of nanowire seeds promotes the growth selectivity on patterned graphene at the expense of the structural quality (presence of voids, stacking faults, dislocations, and inversion domains). On the contrary, the use of smaller patches (65 nm) allows to grow μ-platelets from a very limited seed number (<3 nanowires) with a significantly reduced number of extended defects. These observations have been directly related to optical measurements by cathodoluminescence and high-resolution transmission electronic microscopy observations performed on the same μ-platelets for the different graphene patch radii (65, 90, 250 nm). The formation of defects is discussed and supported by nucleation, intra- and intercoalescence mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Construction of Cd(II) Metal–Organic Frameworks Based on a Robust Heterocyclic Phosphazene and Divergent N-Donor Ligands: A Comprehensive Photocatalytic Investigation on Dye Degradation Can Coordinated Water be a Good Hydrogen Bond Acceptor? Crystallographic and Quantum Chemical Study Strategic Advancement in Inner Filter Effect Controllable Detection of Tetracyclines and Nitroaromatics in Real-World Matrices by Two-Dimensional Coordination Polymer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1