{"title":"含有 1,2-亚苯基双(3-氯丙酸)取代基团的酞菁锌的合成及其代谢酶抑制作用的研究","authors":"Derya Güngördü Solğun , Nastaran Sadeghian , Parham Taslimi , Tugba Taskin-Tok , Mehmet Salih Ağırtaş","doi":"10.1016/j.poly.2024.117251","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, 4,5-dicyano-1,2-phenylene dinicotinate compound was obtained as a result of the reaction of 4,5-dichlorophthalonitrile and nicotinic acid. This compound was reacted with the zinc chloride salt to obtain the original zinc phthalocyanine compound bearing 1,2-phenylene bis(3-chloropropanoate) substituted groups. This compound and its starting material were characterized with the assist of <sup>1</sup>H NMR, IR, UV–vis, Mass spectrum. In the docking study of compounds (<strong>3</strong>) and (<strong>4</strong>) against each target (AChE, BChE, α-Amy and α-Gly), Zn complex (<strong>4</strong>) exhibits more binding affinity with the target models considered compared to ligand structure (<strong>3</strong>). Especially, AChE protein and complex (<strong>4</strong>) form the best binding affinity with a binding energy value of −10.55 kcal/mol. They are compatible and supportive with the data obtained as a result of in vitro analysis. These 4,5-dicyano-1,2-phenylene dinicotinate (<strong>3</strong>) and 2, 10, 16, 24 – tetrakis 1,2-phenylene bis(3-chloropropanoate) phthalocyaninato) zinc(II) (<strong>4</strong>) complexes had effective inhibition against α-glucosidase, α-amylase, butyrylcholinesterase and AChE. Also, IC<sub>50</sub> amounts were found as 7.84 and 12.36 µM for AChE, 3.80 and 4.56 µM for BChE, 27.08 and 38.14 µM for α-amylase, and 5.30 and 9.73 µM for α-glucosidase.</div></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":"264 ","pages":"Article 117251"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of zinc phthalocyanine containing 1,2-phenylene bis(3-chloropropanoate) substituted groups and investigation of their metabolic enzyme inhibitory effects\",\"authors\":\"Derya Güngördü Solğun , Nastaran Sadeghian , Parham Taslimi , Tugba Taskin-Tok , Mehmet Salih Ağırtaş\",\"doi\":\"10.1016/j.poly.2024.117251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, 4,5-dicyano-1,2-phenylene dinicotinate compound was obtained as a result of the reaction of 4,5-dichlorophthalonitrile and nicotinic acid. This compound was reacted with the zinc chloride salt to obtain the original zinc phthalocyanine compound bearing 1,2-phenylene bis(3-chloropropanoate) substituted groups. This compound and its starting material were characterized with the assist of <sup>1</sup>H NMR, IR, UV–vis, Mass spectrum. In the docking study of compounds (<strong>3</strong>) and (<strong>4</strong>) against each target (AChE, BChE, α-Amy and α-Gly), Zn complex (<strong>4</strong>) exhibits more binding affinity with the target models considered compared to ligand structure (<strong>3</strong>). Especially, AChE protein and complex (<strong>4</strong>) form the best binding affinity with a binding energy value of −10.55 kcal/mol. They are compatible and supportive with the data obtained as a result of in vitro analysis. These 4,5-dicyano-1,2-phenylene dinicotinate (<strong>3</strong>) and 2, 10, 16, 24 – tetrakis 1,2-phenylene bis(3-chloropropanoate) phthalocyaninato) zinc(II) (<strong>4</strong>) complexes had effective inhibition against α-glucosidase, α-amylase, butyrylcholinesterase and AChE. Also, IC<sub>50</sub> amounts were found as 7.84 and 12.36 µM for AChE, 3.80 and 4.56 µM for BChE, 27.08 and 38.14 µM for α-amylase, and 5.30 and 9.73 µM for α-glucosidase.</div></div>\",\"PeriodicalId\":20278,\"journal\":{\"name\":\"Polyhedron\",\"volume\":\"264 \",\"pages\":\"Article 117251\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polyhedron\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0277538724004273\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724004273","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthesis of zinc phthalocyanine containing 1,2-phenylene bis(3-chloropropanoate) substituted groups and investigation of their metabolic enzyme inhibitory effects
In this study, 4,5-dicyano-1,2-phenylene dinicotinate compound was obtained as a result of the reaction of 4,5-dichlorophthalonitrile and nicotinic acid. This compound was reacted with the zinc chloride salt to obtain the original zinc phthalocyanine compound bearing 1,2-phenylene bis(3-chloropropanoate) substituted groups. This compound and its starting material were characterized with the assist of 1H NMR, IR, UV–vis, Mass spectrum. In the docking study of compounds (3) and (4) against each target (AChE, BChE, α-Amy and α-Gly), Zn complex (4) exhibits more binding affinity with the target models considered compared to ligand structure (3). Especially, AChE protein and complex (4) form the best binding affinity with a binding energy value of −10.55 kcal/mol. They are compatible and supportive with the data obtained as a result of in vitro analysis. These 4,5-dicyano-1,2-phenylene dinicotinate (3) and 2, 10, 16, 24 – tetrakis 1,2-phenylene bis(3-chloropropanoate) phthalocyaninato) zinc(II) (4) complexes had effective inhibition against α-glucosidase, α-amylase, butyrylcholinesterase and AChE. Also, IC50 amounts were found as 7.84 and 12.36 µM for AChE, 3.80 and 4.56 µM for BChE, 27.08 and 38.14 µM for α-amylase, and 5.30 and 9.73 µM for α-glucosidase.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.