掺杂钼对 Li2MgN2H2 材料形成焓和电子结构影响的第一性原理研究

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-10-08 DOI:10.1016/j.jpcs.2024.112374
Minyan Yan, He Zhang, Changwei Gong, Mingang Zhang, Qianru Gao
{"title":"掺杂钼对 Li2MgN2H2 材料形成焓和电子结构影响的第一性原理研究","authors":"Minyan Yan,&nbsp;He Zhang,&nbsp;Changwei Gong,&nbsp;Mingang Zhang,&nbsp;Qianru Gao","doi":"10.1016/j.jpcs.2024.112374","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of Mo doping on the formation enthalpy and electronic structure of Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material, as well as the specific improvement mechanism of its hydrogen storage properties, were investigated by employing the first-principles calculation method. The calculation results exhibit that when Mo is doped into the Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material, it is more inclined to take up Mg lattice site at the 8c position. For the Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material, Mo doping can effectively reduce its formation enthalpy by ca. 91.16 kJ/mol, thus resulting in the reduction of its structural stability. Moreover, when the Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material is doped with Mo, its cell volume increases, and its band gap narrows obviously. Meanwhile, the strong force between Mo and N causes the bond strengths of N–H and Li–N to weaken significantly. The aforementioned factors are beneficial to the improvement of its hydrogen sorption kinetics. This work aims to provide theoretical guidance for further development of new efficient catalysts to promote the Li–Mg–N–H material's application.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112374"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles study on impact of Mo doping on the formation enthalpy and electronic structure of Li2MgN2H2 material\",\"authors\":\"Minyan Yan,&nbsp;He Zhang,&nbsp;Changwei Gong,&nbsp;Mingang Zhang,&nbsp;Qianru Gao\",\"doi\":\"10.1016/j.jpcs.2024.112374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The influence of Mo doping on the formation enthalpy and electronic structure of Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material, as well as the specific improvement mechanism of its hydrogen storage properties, were investigated by employing the first-principles calculation method. The calculation results exhibit that when Mo is doped into the Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material, it is more inclined to take up Mg lattice site at the 8c position. For the Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material, Mo doping can effectively reduce its formation enthalpy by ca. 91.16 kJ/mol, thus resulting in the reduction of its structural stability. Moreover, when the Li<sub>2</sub>MgN<sub>2</sub>H<sub>2</sub> material is doped with Mo, its cell volume increases, and its band gap narrows obviously. Meanwhile, the strong force between Mo and N causes the bond strengths of N–H and Li–N to weaken significantly. The aforementioned factors are beneficial to the improvement of its hydrogen sorption kinetics. This work aims to provide theoretical guidance for further development of new efficient catalysts to promote the Li–Mg–N–H material's application.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112374\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005092\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005092","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过第一性原理计算方法,研究了掺杂钼对 Li2MgN2H2 材料的形成焓和电子结构的影响,以及其储氢性能的具体改善机制。计算结果表明,当 Mo 掺杂到 Li2MgN2H2 材料中时,它更倾向于占据 8c 位置的 Mg 晶格位点。对于锂2MgN2H2 材料来说,掺杂钼能有效降低其形成焓约 91.16 kJ/mol,从而导致其结构稳定性降低。此外,掺杂 Mo 后,Li2MgN2H2 材料的电池体积增大,带隙明显变窄。同时,Mo 和 N 之间的强作用力导致 N-H 和 Li-N 的键强度明显减弱。上述因素有利于改善其吸氢动力学。这项工作旨在为进一步开发新型高效催化剂提供理论指导,以促进锂-镁-氮-氢材料的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First-principles study on impact of Mo doping on the formation enthalpy and electronic structure of Li2MgN2H2 material
The influence of Mo doping on the formation enthalpy and electronic structure of Li2MgN2H2 material, as well as the specific improvement mechanism of its hydrogen storage properties, were investigated by employing the first-principles calculation method. The calculation results exhibit that when Mo is doped into the Li2MgN2H2 material, it is more inclined to take up Mg lattice site at the 8c position. For the Li2MgN2H2 material, Mo doping can effectively reduce its formation enthalpy by ca. 91.16 kJ/mol, thus resulting in the reduction of its structural stability. Moreover, when the Li2MgN2H2 material is doped with Mo, its cell volume increases, and its band gap narrows obviously. Meanwhile, the strong force between Mo and N causes the bond strengths of N–H and Li–N to weaken significantly. The aforementioned factors are beneficial to the improvement of its hydrogen sorption kinetics. This work aims to provide theoretical guidance for further development of new efficient catalysts to promote the Li–Mg–N–H material's application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Editorial Board Study on structure and electrical properties of BNBT-La2/3ZrO3 ceramic Constructing a binderless carbon-coated In2O3 anode for high-performance lithium-ion batteries Simulation and optimization of a CsSnI3/CsSnGeI3/Cs3Bi2I9 based triple absorber layer perovskite solar cell using SCAPS-1D RPA Dielectric functions: Streamlined approach to relaxation effects, binding and high momentum dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1