三峡库区老黏土滑坡受地下水影响的水软化特征及多级滑动带再活化机理研究

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2024-10-16 DOI:10.1007/s10064-024-03956-8
Lijuan Sun, Yihan Zhao, Chenjia Li, Yiping Sun, Shiwei Gao
{"title":"三峡库区老黏土滑坡受地下水影响的水软化特征及多级滑动带再活化机理研究","authors":"Lijuan Sun,&nbsp;Yihan Zhao,&nbsp;Chenjia Li,&nbsp;Yiping Sun,&nbsp;Shiwei Gao","doi":"10.1007/s10064-024-03956-8","DOIUrl":null,"url":null,"abstract":"<div><p>The reactivation events of old landslides in the Three Gorges Reservoir area occur frequently, making it imperative to study the water softening characteristics and reactivation mechanism. An old clay landslide was selected as the focus of the research, and a segmented water injection permeable sliding surface was designed to simulate the formation and evolution of the old sliding zone during the process of groundwater rise. Volumetric water content sensors, pore water pressure gauges, high-speed camera devices, and Geopiv-RG digital image processing technology were used to obtain data on multiple physical fields. The analysis results indicated that the decrease in shear strength of the sliding zone soil and the sudden increase in pore water pressure on the sliding surface were important factors in the reactivation of old landslides. The surface deformation exhibited prominent zoning characteristics, primarily categorized into zones of strong deformation, weak deformation, and traction deformation. The failure mechanism involved shear sliding at the front edge, tensile cracking and failure at the trailing edge, and shear creep in the middle section. The development of multi-stage secondary sliding zones in old landslides can be categorized into three types: parallel to the original old sliding zone, partially overlapping with the original sliding zone to form a layered landslide, and completely overlapping with the original sliding zone, indicating overall reactivated deformation.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on water softening characteristics and multi-stage sliding zone reactivation mechanism of old clay landslides in the Three Gorges Reservoir area subjected to groundwater\",\"authors\":\"Lijuan Sun,&nbsp;Yihan Zhao,&nbsp;Chenjia Li,&nbsp;Yiping Sun,&nbsp;Shiwei Gao\",\"doi\":\"10.1007/s10064-024-03956-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reactivation events of old landslides in the Three Gorges Reservoir area occur frequently, making it imperative to study the water softening characteristics and reactivation mechanism. An old clay landslide was selected as the focus of the research, and a segmented water injection permeable sliding surface was designed to simulate the formation and evolution of the old sliding zone during the process of groundwater rise. Volumetric water content sensors, pore water pressure gauges, high-speed camera devices, and Geopiv-RG digital image processing technology were used to obtain data on multiple physical fields. The analysis results indicated that the decrease in shear strength of the sliding zone soil and the sudden increase in pore water pressure on the sliding surface were important factors in the reactivation of old landslides. The surface deformation exhibited prominent zoning characteristics, primarily categorized into zones of strong deformation, weak deformation, and traction deformation. The failure mechanism involved shear sliding at the front edge, tensile cracking and failure at the trailing edge, and shear creep in the middle section. The development of multi-stage secondary sliding zones in old landslides can be categorized into three types: parallel to the original old sliding zone, partially overlapping with the original sliding zone to form a layered landslide, and completely overlapping with the original sliding zone, indicating overall reactivated deformation.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03956-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03956-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

三峡库区老滑坡再活化事件频发,水软化特征及再活化机理研究迫在眉睫。研究选取了一处老黏土滑坡作为研究对象,设计了分段注水透水滑动面,模拟老滑动带在地下水上升过程中的形成和演化过程。利用体积含水量传感器、孔隙水压力计、高速摄像装置和 Geopiv-RG 数字图像处理技术获取了多个物理场的数据。分析结果表明,滑动带土壤抗剪强度的降低和滑动面孔隙水压力的突然增加是旧滑坡重新启动的重要因素。地表变形表现出明显的分区特征,主要分为强变形区、弱变形区和牵引变形区。破坏机制包括前缘的剪切滑动、后缘的拉伸开裂和破坏以及中段的剪切蠕变。老滑坡中多级次级滑动带的发展可分为三种类型:与原老滑动带平行、与原滑动带部分重叠形成层状滑坡,以及与原滑动带完全重叠,表明整体重新激活变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on water softening characteristics and multi-stage sliding zone reactivation mechanism of old clay landslides in the Three Gorges Reservoir area subjected to groundwater

The reactivation events of old landslides in the Three Gorges Reservoir area occur frequently, making it imperative to study the water softening characteristics and reactivation mechanism. An old clay landslide was selected as the focus of the research, and a segmented water injection permeable sliding surface was designed to simulate the formation and evolution of the old sliding zone during the process of groundwater rise. Volumetric water content sensors, pore water pressure gauges, high-speed camera devices, and Geopiv-RG digital image processing technology were used to obtain data on multiple physical fields. The analysis results indicated that the decrease in shear strength of the sliding zone soil and the sudden increase in pore water pressure on the sliding surface were important factors in the reactivation of old landslides. The surface deformation exhibited prominent zoning characteristics, primarily categorized into zones of strong deformation, weak deformation, and traction deformation. The failure mechanism involved shear sliding at the front edge, tensile cracking and failure at the trailing edge, and shear creep in the middle section. The development of multi-stage secondary sliding zones in old landslides can be categorized into three types: parallel to the original old sliding zone, partially overlapping with the original sliding zone to form a layered landslide, and completely overlapping with the original sliding zone, indicating overall reactivated deformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Creep mechanism of landslide formation in rock with bedding and weak layers in Zezhou, Shanxi, China Effects of initial water and salt content on permeability and microstructure of sodic-saline loessal soils Experimental investigation and fractional elastoplastic damage constitutive modelling of gray sandstone under loading disturbance Probabilistic landslide-generated impulse waves estimation in mountain reservoirs, a case study A novel data-driven hybrid intelligent prediction model for reservoir landslide displacement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1