高正交包晶石中的普遍极不稳定性

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-10-16 DOI:10.1021/jacs.4c11163
Cameron A. M. Scott, Nicholas C. Bristowe
{"title":"高正交包晶石中的普遍极不稳定性","authors":"Cameron A. M. Scott, Nicholas C. Bristowe","doi":"10.1021/jacs.4c11163","DOIUrl":null,"url":null,"abstract":"The design of novel multiferroic ABO<sub>3</sub> perovskites is complicated by the presence of necessary magnetic cations and ubiquitous antiferrodistortive modes, both of which suppress polar distortions. Using first-principles simulations, we observe that the existence of quadlinear and trilinear invariants in the free energy, coupling tilts, and antipolar motions of A and B sites to the polar mode drives an avalanche-like transition to a non-centrosymmetric <i>Pna</i>2<sub>1</sub> symmetry in a wide range of magnetic perovskites with small tolerance factors, overcoming the above restrictions. We find that the <i>Pna</i>2<sub>1</sub> phase is especially favored with tensile epitaxial strain, leading to an unexpected but technologically useful out-of-plane polarization. We use this mechanism to predict various novel multiferroics, displaying interesting magnetoelectric properties with small polarization switching barriers.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal Polar Instability in Highly Orthorhombic Perovskites\",\"authors\":\"Cameron A. M. Scott, Nicholas C. Bristowe\",\"doi\":\"10.1021/jacs.4c11163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of novel multiferroic ABO<sub>3</sub> perovskites is complicated by the presence of necessary magnetic cations and ubiquitous antiferrodistortive modes, both of which suppress polar distortions. Using first-principles simulations, we observe that the existence of quadlinear and trilinear invariants in the free energy, coupling tilts, and antipolar motions of A and B sites to the polar mode drives an avalanche-like transition to a non-centrosymmetric <i>Pna</i>2<sub>1</sub> symmetry in a wide range of magnetic perovskites with small tolerance factors, overcoming the above restrictions. We find that the <i>Pna</i>2<sub>1</sub> phase is especially favored with tensile epitaxial strain, leading to an unexpected but technologically useful out-of-plane polarization. We use this mechanism to predict various novel multiferroics, displaying interesting magnetoelectric properties with small polarization switching barriers.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c11163\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal Polar Instability in Highly Orthorhombic Perovskites
The design of novel multiferroic ABO3 perovskites is complicated by the presence of necessary magnetic cations and ubiquitous antiferrodistortive modes, both of which suppress polar distortions. Using first-principles simulations, we observe that the existence of quadlinear and trilinear invariants in the free energy, coupling tilts, and antipolar motions of A and B sites to the polar mode drives an avalanche-like transition to a non-centrosymmetric Pna21 symmetry in a wide range of magnetic perovskites with small tolerance factors, overcoming the above restrictions. We find that the Pna21 phase is especially favored with tensile epitaxial strain, leading to an unexpected but technologically useful out-of-plane polarization. We use this mechanism to predict various novel multiferroics, displaying interesting magnetoelectric properties with small polarization switching barriers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Fleeting-Active-Site-Thrust Oxygen Evolution Reaction by Iron Cations from the Electrolyte Universal Polar Instability in Highly Orthorhombic Perovskites Dynamic Two-Dimensional Covalent Organic Frameworks with Large Solvent-Induced Lattice Expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1