Sebastian Cano-Besquet,Maiyon Park,Nadia Berkley,Michelle Wong,Sarah Ashiqueali,Sarah Noureddine,Adam Gesing,Augusto Schneider,Jeffrey Mason,Michal M Masternak,Joseph M Dhahbi
{"title":"基因和转录本的表达模式,以及脂肪组织中同工酶的转换和长非编码 RNA 的动态变化,是艾姆斯侏儒小鼠长寿的基础。","authors":"Sebastian Cano-Besquet,Maiyon Park,Nadia Berkley,Michelle Wong,Sarah Ashiqueali,Sarah Noureddine,Adam Gesing,Augusto Schneider,Jeffrey Mason,Michal M Masternak,Joseph M Dhahbi","doi":"10.1007/s11357-024-01383-x","DOIUrl":null,"url":null,"abstract":"Our study investigates gene expression in adipose tissue of Ames dwarf (df/df) mice, whose deficiency in growth hormone is linked to health and extended lifespan. Recognizing adipose tissue influence on metabolism, aging, and related diseases, we aim to understand its contribution to the health and longevity of df/df mice. We have identified gene and transcript expression patterns associated with critical biological functions, including metabolism, stress response, and resistance to cancer. Intriguingly, we identified genes that, despite maintaining unchanged expression levels, switch between different isoforms, impacting essential cellular functions such as tumor suppression, oncogenic activity, ATP transport, and lipid biosynthesis and storage. The isoform switching is associated with changes in protein domains, retention of introns, initiation of nonsense-mediated decay, and emergence of intrinsically disordered regions. Moreover, we detected various alternative splicing events that may drive these structural alterations. We also found changes in the expression of long non-coding RNAs (lncRNAs) that may be involved in the aging process and disease resistance by regulating crucial genes in survival and metabolism. Through weighted gene co-expression network analysis, we have linked four lncRNAs with 29 genes, which contribute to protein complexes such as the Mili-Tdrd1-Tdrd12 complex. Beyond safeguarding DNA integrity, this complex also has a wider impact on gene regulation, chromatin structure, and metabolic control. Our detailed investigation provides insight into the molecular foundations of the remarkable health and longevity of df/df mice, emphasizing the significance of adipose tissue in aging and identifying new avenues for health-promoting therapeutic strategies.","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene and transcript expression patterns, coupled with isoform switching and long non-coding RNA dynamics in adipose tissue, underlie the longevity of Ames dwarf mice.\",\"authors\":\"Sebastian Cano-Besquet,Maiyon Park,Nadia Berkley,Michelle Wong,Sarah Ashiqueali,Sarah Noureddine,Adam Gesing,Augusto Schneider,Jeffrey Mason,Michal M Masternak,Joseph M Dhahbi\",\"doi\":\"10.1007/s11357-024-01383-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our study investigates gene expression in adipose tissue of Ames dwarf (df/df) mice, whose deficiency in growth hormone is linked to health and extended lifespan. Recognizing adipose tissue influence on metabolism, aging, and related diseases, we aim to understand its contribution to the health and longevity of df/df mice. We have identified gene and transcript expression patterns associated with critical biological functions, including metabolism, stress response, and resistance to cancer. Intriguingly, we identified genes that, despite maintaining unchanged expression levels, switch between different isoforms, impacting essential cellular functions such as tumor suppression, oncogenic activity, ATP transport, and lipid biosynthesis and storage. The isoform switching is associated with changes in protein domains, retention of introns, initiation of nonsense-mediated decay, and emergence of intrinsically disordered regions. Moreover, we detected various alternative splicing events that may drive these structural alterations. We also found changes in the expression of long non-coding RNAs (lncRNAs) that may be involved in the aging process and disease resistance by regulating crucial genes in survival and metabolism. Through weighted gene co-expression network analysis, we have linked four lncRNAs with 29 genes, which contribute to protein complexes such as the Mili-Tdrd1-Tdrd12 complex. Beyond safeguarding DNA integrity, this complex also has a wider impact on gene regulation, chromatin structure, and metabolic control. Our detailed investigation provides insight into the molecular foundations of the remarkable health and longevity of df/df mice, emphasizing the significance of adipose tissue in aging and identifying new avenues for health-promoting therapeutic strategies.\",\"PeriodicalId\":12730,\"journal\":{\"name\":\"GeroScience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeroScience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11357-024-01383-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-024-01383-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Gene and transcript expression patterns, coupled with isoform switching and long non-coding RNA dynamics in adipose tissue, underlie the longevity of Ames dwarf mice.
Our study investigates gene expression in adipose tissue of Ames dwarf (df/df) mice, whose deficiency in growth hormone is linked to health and extended lifespan. Recognizing adipose tissue influence on metabolism, aging, and related diseases, we aim to understand its contribution to the health and longevity of df/df mice. We have identified gene and transcript expression patterns associated with critical biological functions, including metabolism, stress response, and resistance to cancer. Intriguingly, we identified genes that, despite maintaining unchanged expression levels, switch between different isoforms, impacting essential cellular functions such as tumor suppression, oncogenic activity, ATP transport, and lipid biosynthesis and storage. The isoform switching is associated with changes in protein domains, retention of introns, initiation of nonsense-mediated decay, and emergence of intrinsically disordered regions. Moreover, we detected various alternative splicing events that may drive these structural alterations. We also found changes in the expression of long non-coding RNAs (lncRNAs) that may be involved in the aging process and disease resistance by regulating crucial genes in survival and metabolism. Through weighted gene co-expression network analysis, we have linked four lncRNAs with 29 genes, which contribute to protein complexes such as the Mili-Tdrd1-Tdrd12 complex. Beyond safeguarding DNA integrity, this complex also has a wider impact on gene regulation, chromatin structure, and metabolic control. Our detailed investigation provides insight into the molecular foundations of the remarkable health and longevity of df/df mice, emphasizing the significance of adipose tissue in aging and identifying new avenues for health-promoting therapeutic strategies.
GeroScienceMedicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍:
GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.