SPACE4AI-D:计算连续体中人工智能应用资源选择的设计时工具

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Services Computing Pub Date : 2024-10-14 DOI:10.1109/TSC.2024.3479935
Hamta Sedghani;Federica Filippini;Danilo Ardagna
{"title":"SPACE4AI-D:计算连续体中人工智能应用资源选择的设计时工具","authors":"Hamta Sedghani;Federica Filippini;Danilo Ardagna","doi":"10.1109/TSC.2024.3479935","DOIUrl":null,"url":null,"abstract":"Nowadays, Artificial Intelligence (AI) applications are becoming increasingly popular in a wide range of industries, mainly thanks to Deep Neural Networks (DNNs) that needs powerful resources. Cloud computing is a promising approach to serve AI applications thanks to its high processing power, but this sometimes results in an unacceptable latency because of long-distance communication. Vice versa, edge computing is close to where data are generated and therefore it is becoming crucial for their timely, flexible, and secure management. Given the more distributed nature of the edge and the heterogeneity of its resources, efficient component placement and resource allocation approaches become critical in orchestrating the application execution. In this paper, we formulate the resource selection and AI applications component placement problem in a computing continuum as a Mixed Integer Non-Linear Problem (MINLP), and we propose a design-time tool for its efficient solution. We first propose a Random Greedy algorithm to minimize the cost of the placement while guaranteeing some response time performance constraints. Then, we develop some heuristic methods such as Local Search, Tabu Search, Simulated Annealing and Genetic Algorithms, to improve the initial solutions provided by the Random Greedy. To evaluate our proposed approach, we designed an extensive experimental campaign, comparing the heuristics methods with one another and then the best heuristic against Best Cost Performance Constraint (BCPC) algorithm, a state-of-the-art approach. The results demonstrate that our proposed approach finds lower-cost solution than BCPC (27.6% on average) under the same time limit in large-scale systems. Finally, during the validation in a real edge system including FaaS resources our approach finds the globally optimal solution, suffering a deviation of around 12% between actual and predicted costs.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"17 6","pages":"4324-4339"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPACE4AI-D: A Design-Time Tool for AI Applications Resource Selection in Computing Continua\",\"authors\":\"Hamta Sedghani;Federica Filippini;Danilo Ardagna\",\"doi\":\"10.1109/TSC.2024.3479935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, Artificial Intelligence (AI) applications are becoming increasingly popular in a wide range of industries, mainly thanks to Deep Neural Networks (DNNs) that needs powerful resources. Cloud computing is a promising approach to serve AI applications thanks to its high processing power, but this sometimes results in an unacceptable latency because of long-distance communication. Vice versa, edge computing is close to where data are generated and therefore it is becoming crucial for their timely, flexible, and secure management. Given the more distributed nature of the edge and the heterogeneity of its resources, efficient component placement and resource allocation approaches become critical in orchestrating the application execution. In this paper, we formulate the resource selection and AI applications component placement problem in a computing continuum as a Mixed Integer Non-Linear Problem (MINLP), and we propose a design-time tool for its efficient solution. We first propose a Random Greedy algorithm to minimize the cost of the placement while guaranteeing some response time performance constraints. Then, we develop some heuristic methods such as Local Search, Tabu Search, Simulated Annealing and Genetic Algorithms, to improve the initial solutions provided by the Random Greedy. To evaluate our proposed approach, we designed an extensive experimental campaign, comparing the heuristics methods with one another and then the best heuristic against Best Cost Performance Constraint (BCPC) algorithm, a state-of-the-art approach. The results demonstrate that our proposed approach finds lower-cost solution than BCPC (27.6% on average) under the same time limit in large-scale systems. Finally, during the validation in a real edge system including FaaS resources our approach finds the globally optimal solution, suffering a deviation of around 12% between actual and predicted costs.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"17 6\",\"pages\":\"4324-4339\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715700/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10715700/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

如今,人工智能(AI)应用在广泛的行业中越来越受欢迎,这主要得益于需要强大资源的深度神经网络(dnn)。由于其高处理能力,云计算是为人工智能应用程序提供服务的一种很有前途的方法,但由于长距离通信,这有时会导致不可接受的延迟。反之亦然,边缘计算接近数据生成的位置,因此它对于数据的及时、灵活和安全管理变得至关重要。考虑到边缘的分布式特性及其资源的异构性,有效的组件放置和资源分配方法在编排应用程序执行中变得至关重要。本文将计算连续体中的资源选择和人工智能应用组件放置问题表述为一个混合整数非线性问题(MINLP),并提出了一个设计时工具来有效地解决该问题。我们首先提出了一种随机贪婪算法来最小化放置成本,同时保证一些响应时间性能约束。然后,我们开发了一些启发式方法,如局部搜索、禁忌搜索、模拟退火和遗传算法,以改进随机贪婪算法提供的初始解。为了评估我们提出的方法,我们设计了一个广泛的实验活动,将启发式方法彼此进行比较,然后对最佳成本性能约束(BCPC)算法进行最佳启发式,这是一种最先进的方法。结果表明,在相同的时间限制下,我们提出的方法比BCPC(平均27.6%)的成本更低。最后,在包含FaaS资源的真实边缘系统的验证过程中,我们的方法找到了全局最优解决方案,实际成本和预测成本之间的偏差约为12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPACE4AI-D: A Design-Time Tool for AI Applications Resource Selection in Computing Continua
Nowadays, Artificial Intelligence (AI) applications are becoming increasingly popular in a wide range of industries, mainly thanks to Deep Neural Networks (DNNs) that needs powerful resources. Cloud computing is a promising approach to serve AI applications thanks to its high processing power, but this sometimes results in an unacceptable latency because of long-distance communication. Vice versa, edge computing is close to where data are generated and therefore it is becoming crucial for their timely, flexible, and secure management. Given the more distributed nature of the edge and the heterogeneity of its resources, efficient component placement and resource allocation approaches become critical in orchestrating the application execution. In this paper, we formulate the resource selection and AI applications component placement problem in a computing continuum as a Mixed Integer Non-Linear Problem (MINLP), and we propose a design-time tool for its efficient solution. We first propose a Random Greedy algorithm to minimize the cost of the placement while guaranteeing some response time performance constraints. Then, we develop some heuristic methods such as Local Search, Tabu Search, Simulated Annealing and Genetic Algorithms, to improve the initial solutions provided by the Random Greedy. To evaluate our proposed approach, we designed an extensive experimental campaign, comparing the heuristics methods with one another and then the best heuristic against Best Cost Performance Constraint (BCPC) algorithm, a state-of-the-art approach. The results demonstrate that our proposed approach finds lower-cost solution than BCPC (27.6% on average) under the same time limit in large-scale systems. Finally, during the validation in a real edge system including FaaS resources our approach finds the globally optimal solution, suffering a deviation of around 12% between actual and predicted costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
期刊最新文献
Intelligent Transaction Generation Control for Permissioned Blockchain-based Services Large-Scale Service Mesh Orchestration with Probabilistic Routing in Cloud Data Centers Federated Contrastive Learning for Cross-Domain Recommendation LogNotion: Highlighting Massive Logs to Assist Human Reading and Decision Making A Hybrid Optimization Framework for Age of Information Minimization in UAV-assisted MCS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1