Yutao Liu, Jialin Wu, Ruiying Liu, Fan Li, Leyan Xuan, Qian Wang, Dan Li, XinTong Chen, Hao Sun, Xiaoya Li, Chen Jin, Di Huang, Linxing Li, Guosheng Tang, Bin Liu
{"title":"壳聚糖寡糖介导的 ChsR 活性抑制霍乱弧菌的致病力","authors":"Yutao Liu, Jialin Wu, Ruiying Liu, Fan Li, Leyan Xuan, Qian Wang, Dan Li, XinTong Chen, Hao Sun, Xiaoya Li, Chen Jin, Di Huang, Linxing Li, Guosheng Tang, Bin Liu","doi":"10.1038/s41564-024-01823-6","DOIUrl":null,"url":null,"abstract":"Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR–tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention. The chitosan utilization regulator, ChsR, positively regulates Vibrio cholerae virulence factor expression, which can be inhibited therapeutically by chitosan oligosaccharide administration in mice.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 11","pages":"2909-2922"},"PeriodicalIF":20.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity\",\"authors\":\"Yutao Liu, Jialin Wu, Ruiying Liu, Fan Li, Leyan Xuan, Qian Wang, Dan Li, XinTong Chen, Hao Sun, Xiaoya Li, Chen Jin, Di Huang, Linxing Li, Guosheng Tang, Bin Liu\",\"doi\":\"10.1038/s41564-024-01823-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR–tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention. The chitosan utilization regulator, ChsR, positively regulates Vibrio cholerae virulence factor expression, which can be inhibited therapeutically by chitosan oligosaccharide administration in mice.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"9 11\",\"pages\":\"2909-2922\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01823-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01823-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Vibrio cholerae virulence is blocked by chitosan oligosaccharide-mediated inhibition of ChsR activity
Vibrio cholerae causes cholera, an important cause of death worldwide. A fuller understanding of how virulence is regulated offers the potential for developing virulence inhibitors, regarded as efficient therapeutic alternatives for cholera treatment. Here we show using competitive infections of wild-type and mutant bacteria that the regulator of chitosan utilization, ChsR, increases V. cholerae virulence in vivo. Mechanistically, RNA sequencing, chromatin immunoprecipitation with sequencing and molecular biology approaches revealed that ChsR directly upregulated the expression of the virulence regulator, TcpP, which promoted expression of the cholera toxin and the toxin co-regulated pilus, in response to low O2 levels in the small intestine. We also found that chitosan degradation products inhibit the ChsR–tcpP promoter interaction. Consistently, administration of chitosan oligosaccharide, particularly when delivered via sodium alginate microsphere carriers, reduced V. cholerae intestinal colonization and disease severity in mice by blocking the chsR-mediated pathway. These data reveal the potential of chitosan oligosaccharide as supplemental therapy for cholera treatment and prevention. The chitosan utilization regulator, ChsR, positively regulates Vibrio cholerae virulence factor expression, which can be inhibited therapeutically by chitosan oligosaccharide administration in mice.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.