整合预测方法,支持有限元分析,探索传热的复杂性

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS International Journal of Numerical Methods for Heat & Fluid Flow Pub Date : 2024-10-16 DOI:10.1108/hff-06-2024-0477
Maryam Fatima, Peter S. Kim, Youming Lei, A.M. Siddiqui, Ayesha Sohail
{"title":"整合预测方法,支持有限元分析,探索传热的复杂性","authors":"Maryam Fatima, Peter S. Kim, Youming Lei, A.M. Siddiqui, Ayesha Sohail","doi":"10.1108/hff-06-2024-0477","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to reduce the cost of experiments required to test the efficiency of materials suitable for artificial tissue ablation by increasing efficiency and accurately forecasting heating properties.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A two-step numerical analysis is used to develop and simulate a bioheat model using improved finite element method and deep learning algorithms, systematically regulating temperature distributions within the hydrogel artificial tissue during radiofrequency ablation (RFA). The model connects supervised learning and finite element analysis data to optimize electrode configurations, ensuring precise heat application while protecting surrounding hydrogel integrity.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The model accurately predicts a range of thermal changes critical for optimizing RFA, thereby enhancing treatment precision and minimizing impact on surrounding hydrogel materials. This computational approach not only advances the understanding of thermal dynamics but also provides a robust framework for improving therapeutic outcomes.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>A computational predictive bioheat model, incorporating deep learning to optimize electrode configurations and minimize collateral tissue damage, represents a pioneering approach in interventional research. This method offers efficient evaluation of thermal strategies with reduced computational overhead compared to traditional numerical methods.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"40 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating forecasting methods to support finite element analysis and explore heat transfer complexities\",\"authors\":\"Maryam Fatima, Peter S. Kim, Youming Lei, A.M. Siddiqui, Ayesha Sohail\",\"doi\":\"10.1108/hff-06-2024-0477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to reduce the cost of experiments required to test the efficiency of materials suitable for artificial tissue ablation by increasing efficiency and accurately forecasting heating properties.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>A two-step numerical analysis is used to develop and simulate a bioheat model using improved finite element method and deep learning algorithms, systematically regulating temperature distributions within the hydrogel artificial tissue during radiofrequency ablation (RFA). The model connects supervised learning and finite element analysis data to optimize electrode configurations, ensuring precise heat application while protecting surrounding hydrogel integrity.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The model accurately predicts a range of thermal changes critical for optimizing RFA, thereby enhancing treatment precision and minimizing impact on surrounding hydrogel materials. This computational approach not only advances the understanding of thermal dynamics but also provides a robust framework for improving therapeutic outcomes.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>A computational predictive bioheat model, incorporating deep learning to optimize electrode configurations and minimize collateral tissue damage, represents a pioneering approach in interventional research. This method offers efficient evaluation of thermal strategies with reduced computational overhead compared to traditional numerical methods.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-06-2024-0477\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-06-2024-0477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过提高效率和准确预测加热特性,降低测试适用于人工组织消融的材料效率所需的实验成本。设计/方法/途径采用两步数值分析法,利用改进的有限元法和深度学习算法开发和模拟生物热模型,在射频消融(RFA)过程中系统地调节水凝胶人工组织内的温度分布。该模型连接了监督学习和有限元分析数据,以优化电极配置,确保精确的热应用,同时保护周围水凝胶的完整性。研究结果该模型准确预测了一系列对优化射频消融至关重要的热变化,从而提高了治疗精度,并最大限度地减少了对周围水凝胶材料的影响。这一计算方法不仅加深了对热动力学的理解,还为改善治疗效果提供了一个强大的框架。原创性/价值一个计算预测性生物热模型结合了深度学习,可优化电极配置并最大限度地减少附带组织损伤,是介入研究领域的一个开创性方法。与传统的数值方法相比,该方法可有效评估热策略,并减少计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating forecasting methods to support finite element analysis and explore heat transfer complexities

Purpose

This paper aims to reduce the cost of experiments required to test the efficiency of materials suitable for artificial tissue ablation by increasing efficiency and accurately forecasting heating properties.

Design/methodology/approach

A two-step numerical analysis is used to develop and simulate a bioheat model using improved finite element method and deep learning algorithms, systematically regulating temperature distributions within the hydrogel artificial tissue during radiofrequency ablation (RFA). The model connects supervised learning and finite element analysis data to optimize electrode configurations, ensuring precise heat application while protecting surrounding hydrogel integrity.

Findings

The model accurately predicts a range of thermal changes critical for optimizing RFA, thereby enhancing treatment precision and minimizing impact on surrounding hydrogel materials. This computational approach not only advances the understanding of thermal dynamics but also provides a robust framework for improving therapeutic outcomes.

Originality/value

A computational predictive bioheat model, incorporating deep learning to optimize electrode configurations and minimize collateral tissue damage, represents a pioneering approach in interventional research. This method offers efficient evaluation of thermal strategies with reduced computational overhead compared to traditional numerical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
期刊最新文献
Thermo-hydraulic performance of air heat exchanger using prepared ternary HNF: a CFD analysis Multiple exact solutions in tri-hybrid nanofluid flow: a study of elastic surface effects Dual solutions of hybrid nanofluid flow past a permeable melting shrinking sheet with higher-order slips, shape factor and viscous dissipation effect Uncertainty analysis of MHD oscillatory flow of ternary nanofluids through a diverging channel: a comparative study of nanofluid composites Twisted-tape inserts of rectangular and triangular sections in turbulent flow of CMC/CuO non-Newtonian nanofluid into an oval tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1