云-云碰撞:天枢-纤丝系统的形成及相关气体运动学。质量收集锥--云-云碰撞的新特征

A. K. Maity, T. Inoue, Y. Fukui, L. K. Dewangan, H. Sano, R. I. Yamada, K. Tachihara, N. K. Bhadari and O. R. Jadhav
{"title":"云-云碰撞:天枢-纤丝系统的形成及相关气体运动学。质量收集锥--云-云碰撞的新特征","authors":"A. K. Maity, T. Inoue, Y. Fukui, L. K. Dewangan, H. Sano, R. I. Yamada, K. Tachihara, N. K. Bhadari and O. R. Jadhav","doi":"10.3847/1538-4357/ad7098","DOIUrl":null,"url":null,"abstract":"Massive star-forming regions (MSFRs) are commonly associated with hub-filament systems (HFSs) and sites of cloud–cloud collision (CCC). Recent observational studies of some MSFRs suggest a possible connection between CCC and the formation of HFSs. To understand this connection, we analyzed the magnetohydrodynamic simulation data from Inoue et al. This simulation involves the collision of a spherical turbulent molecular cloud with a plane-parallel sea of dense molecular gas at a relative velocity of about 10 km s−1. Following the collision, the turbulent and nonuniform cloud undergoes shock compression, rapidly developing filamentary structures within the compressed layer. We found that CCC can lead to the formation of HFSs, which is the combined effect of turbulence, shock compression, magnetic field, and gravity. The collision between the cloud components shapes the filaments into a cone and drives inward flows among them. These inward flows merge at the vertex of the cone, rapidly accumulating high-density gas, which can lead to the formation of massive star(s). The cone acts as a mass-collecting machine, involving a nongravitational early process of filament formation, followed by gravitational gas attraction to finalize the HFS. The gas distribution in the position–velocity (PV) and position–position spaces highlights the challenges in detecting two cloud components and confirming their complementary distribution if the colliding clouds have a large size difference. However, such CCC events can be confirmed by the PV diagrams presenting gas flow toward the vertex of the cone, which hosts gravitationally collapsing high-density objects, and by the magnetic field morphology curved toward the direction of the collision.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud–Cloud Collision: Formation of Hub-filament Systems and Associated Gas Kinematics. Mass-collecting Cone—A New Signature of Cloud–Cloud Collision\",\"authors\":\"A. K. Maity, T. Inoue, Y. Fukui, L. K. Dewangan, H. Sano, R. I. Yamada, K. Tachihara, N. K. Bhadari and O. R. Jadhav\",\"doi\":\"10.3847/1538-4357/ad7098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive star-forming regions (MSFRs) are commonly associated with hub-filament systems (HFSs) and sites of cloud–cloud collision (CCC). Recent observational studies of some MSFRs suggest a possible connection between CCC and the formation of HFSs. To understand this connection, we analyzed the magnetohydrodynamic simulation data from Inoue et al. This simulation involves the collision of a spherical turbulent molecular cloud with a plane-parallel sea of dense molecular gas at a relative velocity of about 10 km s−1. Following the collision, the turbulent and nonuniform cloud undergoes shock compression, rapidly developing filamentary structures within the compressed layer. We found that CCC can lead to the formation of HFSs, which is the combined effect of turbulence, shock compression, magnetic field, and gravity. The collision between the cloud components shapes the filaments into a cone and drives inward flows among them. These inward flows merge at the vertex of the cone, rapidly accumulating high-density gas, which can lead to the formation of massive star(s). The cone acts as a mass-collecting machine, involving a nongravitational early process of filament formation, followed by gravitational gas attraction to finalize the HFS. The gas distribution in the position–velocity (PV) and position–position spaces highlights the challenges in detecting two cloud components and confirming their complementary distribution if the colliding clouds have a large size difference. However, such CCC events can be confirmed by the PV diagrams presenting gas flow toward the vertex of the cone, which hosts gravitationally collapsing high-density objects, and by the magnetic field morphology curved toward the direction of the collision.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad7098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad7098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大质量恒星形成区(MSFRs)通常与枢纽-纤丝系统(HFSs)和云-云碰撞(CCC)场所有关。最近对一些MSFRs的观测研究表明,CCC与HFSs的形成之间可能存在联系。为了了解这种联系,我们分析了 Inoue 等人的磁流体动力学模拟数据。该模拟涉及球形湍流分子云与平面平行的高密度分子气海以约 10 km s-1 的相对速度发生碰撞。碰撞后,湍流和非均匀云发生冲击压缩,在压缩层内迅速形成丝状结构。我们发现,在湍流、冲击压缩、磁场和重力的共同作用下,CCC 可导致 HFS 的形成。云成分之间的碰撞将丝状体塑造成锥形,并驱动丝状体向内流动。这些内向气流在锥体顶点汇合,迅速积聚高密度气体,从而形成大质量恒星。锥体就像一台质量收集机器,包括一个非引力的丝状物形成的早期过程,然后是引力气体吸引,最终形成高密度恒星。位置-速度(PV)和位置-位置空间中的气体分布凸显了在碰撞云尺寸差异较大的情况下,探测两个云成分并确认其互补分布所面临的挑战。不过,这种 CCC 事件可以通过 PV 图来确认,PV 图显示气体流向锥体顶点,而锥体顶点则承载着引力塌缩的高密度物体,还可以通过磁场形态向碰撞方向弯曲来确认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud–Cloud Collision: Formation of Hub-filament Systems and Associated Gas Kinematics. Mass-collecting Cone—A New Signature of Cloud–Cloud Collision
Massive star-forming regions (MSFRs) are commonly associated with hub-filament systems (HFSs) and sites of cloud–cloud collision (CCC). Recent observational studies of some MSFRs suggest a possible connection between CCC and the formation of HFSs. To understand this connection, we analyzed the magnetohydrodynamic simulation data from Inoue et al. This simulation involves the collision of a spherical turbulent molecular cloud with a plane-parallel sea of dense molecular gas at a relative velocity of about 10 km s−1. Following the collision, the turbulent and nonuniform cloud undergoes shock compression, rapidly developing filamentary structures within the compressed layer. We found that CCC can lead to the formation of HFSs, which is the combined effect of turbulence, shock compression, magnetic field, and gravity. The collision between the cloud components shapes the filaments into a cone and drives inward flows among them. These inward flows merge at the vertex of the cone, rapidly accumulating high-density gas, which can lead to the formation of massive star(s). The cone acts as a mass-collecting machine, involving a nongravitational early process of filament formation, followed by gravitational gas attraction to finalize the HFS. The gas distribution in the position–velocity (PV) and position–position spaces highlights the challenges in detecting two cloud components and confirming their complementary distribution if the colliding clouds have a large size difference. However, such CCC events can be confirmed by the PV diagrams presenting gas flow toward the vertex of the cone, which hosts gravitationally collapsing high-density objects, and by the magnetic field morphology curved toward the direction of the collision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII Tidal Spin-up of Subdwarf B Stars Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1