Han Liu, Yu Ding, Scott Mazurkewich, Wenwen Pei, Xiuxin Wei, Johan Larsbrink, Christophe Chipot, Zhangyong Hong, Wensheng Cai, Zhiyou Zong
{"title":"通过调节纤维生物水解酶的水解过程提高生物质转化过程中的酶活性","authors":"Han Liu, Yu Ding, Scott Mazurkewich, Wenwen Pei, Xiuxin Wei, Johan Larsbrink, Christophe Chipot, Zhangyong Hong, Wensheng Cai, Zhiyou Zong","doi":"10.1021/acscatal.4c05393","DOIUrl":null,"url":null,"abstract":"Cellobiohydrolases (CBHs) are the most significant cellulose-degrading enzymes, the performance of which determines the cost-effective utilization of renewable lignocellulosic resources. Most engineering strategies for improving CBH hydrolysis are currently focused on accelerating the noncatalytic enzyme–substrate dissociation by increasing the flexibility of eight substrate-enclosing loops (SELs), which does not take the catalysis into account or even deteriorates it. Here, in the model <i>Trichoderma reesei</i> CBHI, we identified a key SEL that affects the dissociation by examining enzyme–enzyme/substrate interactions. Furthermore, through analyzing the hydrogen-bonding network for the catalytic region, we detected a crucial residue D262. Root-mean-square-fluctuation analysis indicates that its replacement with valine (D262V) markedly improves the stability of the catalytic triad. Through QM/MM simulations, we determined that this mutation diminished the free-energy barrier against catalysis by 2.3 kcal/mol and increased <i>k</i><sub>cat</sub> by 53.1%, as determined in kinetic experiments. Additionally, the substitution caused a significant enhancement of SEL flexibility and led to a lowered dissociation barrier by 2.1 kcal/mol. The cellobiose yield was increased by 49.8%, owing to the impact of the single valine replacement on the enzyme hydrolysis. This work unlocks a brand-new engineering direction for industrially important CBHs, contributing to more efficient depolymerization of renewable lignocellulose.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting Enzyme Activity in Biomass Conversion by Modulating the Hydrolysis Process of Cellobiohydrolases\",\"authors\":\"Han Liu, Yu Ding, Scott Mazurkewich, Wenwen Pei, Xiuxin Wei, Johan Larsbrink, Christophe Chipot, Zhangyong Hong, Wensheng Cai, Zhiyou Zong\",\"doi\":\"10.1021/acscatal.4c05393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellobiohydrolases (CBHs) are the most significant cellulose-degrading enzymes, the performance of which determines the cost-effective utilization of renewable lignocellulosic resources. Most engineering strategies for improving CBH hydrolysis are currently focused on accelerating the noncatalytic enzyme–substrate dissociation by increasing the flexibility of eight substrate-enclosing loops (SELs), which does not take the catalysis into account or even deteriorates it. Here, in the model <i>Trichoderma reesei</i> CBHI, we identified a key SEL that affects the dissociation by examining enzyme–enzyme/substrate interactions. Furthermore, through analyzing the hydrogen-bonding network for the catalytic region, we detected a crucial residue D262. Root-mean-square-fluctuation analysis indicates that its replacement with valine (D262V) markedly improves the stability of the catalytic triad. Through QM/MM simulations, we determined that this mutation diminished the free-energy barrier against catalysis by 2.3 kcal/mol and increased <i>k</i><sub>cat</sub> by 53.1%, as determined in kinetic experiments. Additionally, the substitution caused a significant enhancement of SEL flexibility and led to a lowered dissociation barrier by 2.1 kcal/mol. The cellobiose yield was increased by 49.8%, owing to the impact of the single valine replacement on the enzyme hydrolysis. This work unlocks a brand-new engineering direction for industrially important CBHs, contributing to more efficient depolymerization of renewable lignocellulose.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c05393\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c05393","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Boosting Enzyme Activity in Biomass Conversion by Modulating the Hydrolysis Process of Cellobiohydrolases
Cellobiohydrolases (CBHs) are the most significant cellulose-degrading enzymes, the performance of which determines the cost-effective utilization of renewable lignocellulosic resources. Most engineering strategies for improving CBH hydrolysis are currently focused on accelerating the noncatalytic enzyme–substrate dissociation by increasing the flexibility of eight substrate-enclosing loops (SELs), which does not take the catalysis into account or even deteriorates it. Here, in the model Trichoderma reesei CBHI, we identified a key SEL that affects the dissociation by examining enzyme–enzyme/substrate interactions. Furthermore, through analyzing the hydrogen-bonding network for the catalytic region, we detected a crucial residue D262. Root-mean-square-fluctuation analysis indicates that its replacement with valine (D262V) markedly improves the stability of the catalytic triad. Through QM/MM simulations, we determined that this mutation diminished the free-energy barrier against catalysis by 2.3 kcal/mol and increased kcat by 53.1%, as determined in kinetic experiments. Additionally, the substitution caused a significant enhancement of SEL flexibility and led to a lowered dissociation barrier by 2.1 kcal/mol. The cellobiose yield was increased by 49.8%, owing to the impact of the single valine replacement on the enzyme hydrolysis. This work unlocks a brand-new engineering direction for industrially important CBHs, contributing to more efficient depolymerization of renewable lignocellulose.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.