Qian Wang, Hong-NingH Dai, Jinghua Yang, Cai Guo, Peter Childs, Maaike Kleinsmann, Yike Guo, Pan Wang
{"title":"基于学习的人工智能作品:方法分类和质量评估","authors":"Qian Wang, Hong-NingH Dai, Jinghua Yang, Cai Guo, Peter Childs, Maaike Kleinsmann, Yike Guo, Pan Wang","doi":"10.1145/3698105","DOIUrl":null,"url":null,"abstract":"With the development of the theory and technology of computer science, machine or computer painting is increasingly being explored in the creation of art. Machine-made works are referred to as artificial intelligence (AI) artworks. Early methods of AI artwork generation have been classified as non-photorealistic rendering (NPR) and, latterly, neural-style transfer methods have also been investigated. As technology advances, the variety of machine-generated artworks and the methods used to create them have proliferated. However, there is no unified and comprehensive system to classify and evaluate these works. To date, no work has generalised methods of creating AI artwork including learning-based methods for painting or drawing. Moreover, the taxonomy, evaluation and development of AI artwork methods face many challenges. This paper is motivated by these considerations. We first investigate current learning-based methods for making AI artworks and classify the methods according to art styles. Furthermore, we propose a consistent evaluation system for AI artworks and conduct a user study to evaluate the proposed system on different AI artworks. This evaluation system uses six criteria: beauty, color, texture, content detail, line and style. The user study demonstrates that the six-dimensional evaluation index is effective for different types of AI artworks.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"18 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-based Artificial Intelligence Artwork: Methodology Taxonomy and Quality Evaluation\",\"authors\":\"Qian Wang, Hong-NingH Dai, Jinghua Yang, Cai Guo, Peter Childs, Maaike Kleinsmann, Yike Guo, Pan Wang\",\"doi\":\"10.1145/3698105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of the theory and technology of computer science, machine or computer painting is increasingly being explored in the creation of art. Machine-made works are referred to as artificial intelligence (AI) artworks. Early methods of AI artwork generation have been classified as non-photorealistic rendering (NPR) and, latterly, neural-style transfer methods have also been investigated. As technology advances, the variety of machine-generated artworks and the methods used to create them have proliferated. However, there is no unified and comprehensive system to classify and evaluate these works. To date, no work has generalised methods of creating AI artwork including learning-based methods for painting or drawing. Moreover, the taxonomy, evaluation and development of AI artwork methods face many challenges. This paper is motivated by these considerations. We first investigate current learning-based methods for making AI artworks and classify the methods according to art styles. Furthermore, we propose a consistent evaluation system for AI artworks and conduct a user study to evaluate the proposed system on different AI artworks. This evaluation system uses six criteria: beauty, color, texture, content detail, line and style. The user study demonstrates that the six-dimensional evaluation index is effective for different types of AI artworks.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3698105\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3698105","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Learning-based Artificial Intelligence Artwork: Methodology Taxonomy and Quality Evaluation
With the development of the theory and technology of computer science, machine or computer painting is increasingly being explored in the creation of art. Machine-made works are referred to as artificial intelligence (AI) artworks. Early methods of AI artwork generation have been classified as non-photorealistic rendering (NPR) and, latterly, neural-style transfer methods have also been investigated. As technology advances, the variety of machine-generated artworks and the methods used to create them have proliferated. However, there is no unified and comprehensive system to classify and evaluate these works. To date, no work has generalised methods of creating AI artwork including learning-based methods for painting or drawing. Moreover, the taxonomy, evaluation and development of AI artwork methods face many challenges. This paper is motivated by these considerations. We first investigate current learning-based methods for making AI artworks and classify the methods according to art styles. Furthermore, we propose a consistent evaluation system for AI artworks and conduct a user study to evaluate the proposed system on different AI artworks. This evaluation system uses six criteria: beauty, color, texture, content detail, line and style. The user study demonstrates that the six-dimensional evaluation index is effective for different types of AI artworks.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.