稳态条件下的异核极化转移:INEPT-SSFP 实验

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-10-16 DOI:10.1021/acs.jpclett.4c02016
Rihards Aleksis, Elton T. Montrazi, Lucio Frydman
{"title":"稳态条件下的异核极化转移:INEPT-SSFP 实验","authors":"Rihards Aleksis, Elton T. Montrazi, Lucio Frydman","doi":"10.1021/acs.jpclett.4c02016","DOIUrl":null,"url":null,"abstract":"NMR finds a wide range of applications, ranging from fundamental chemistry to medical imaging. The technique, however, has an inherently low signal-to-noise ratio (SNR)─particularly when dealing with nuclei having low natural abundances and/or low γs. In these cases, sensitivity is often enhanced by methods that, similar to INEPT, transfer polarization from neighboring <sup>1</sup>Hs via <i>J</i>-couplings. In 1958, Carr proposed an alternative approach to increase NMR sensitivity, which involves generating and continuously detecting a steady-state transverse magnetization, by applying a train of pulses on an ensemble of noninteracting spins. This study broadens Carr’s steady-state free precession (SSFP) framework to encompass the possibility of adding onto it coherent polarization transfers, allowing one to combine the SNR-enhancing benefits of both INEPT and SSFP into a single experiment. Herein, the derivation of the ensuing INEPT-SSFP (ISSFP) sequences is reported. Their use in <sup>13</sup>C NMR and MRI experiments leads to ca. 300% improvements in SNR/ <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mi mathvariant=\"normal\"&gt;unit time&lt;/mi&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span overflow=\"scroll\" style=\"width: 5.003em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 4.548em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.026em, 1004.55em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 4.548em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1003.58em, 4.151em, -999.997em); top: -3.974em; left: 0.912em;\"><span><span><span style=\"font-family: STIXMathJax_Main;\">unit time</span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.526em, 1003.64em, 3.923em, -999.997em); top: -4.656em; left: 0.912em;\"><span style=\"display: inline-block; position: relative; width: 3.639em; height: 0px;\"><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 3.298em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.23em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.514em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.741em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.026em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.253em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.537em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.764em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.048em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.276em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.503em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.787em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 3.014em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(2.844em, 1000.97em, 4.435em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">√</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.503em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mrow><mi mathvariant=\"normal\">unit time</mi></mrow></msqrt></math></span></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><msqrt><mrow><mi mathvariant=\"normal\">unit time</mi></mrow></msqrt></math></script> over conventional <i>J</i>-driven polarization transfer experiments, and sensitivity gains of over 50% over <sup>13</sup>C SSFP performed in combination with <sup>1</sup>H decoupling and NOE. These enhancements match well with numerical simulations and analytical evaluations. The conditions needed to optimize these new methods in both spectroscopic and imaging studies are discussed; we also examine their limitations, and the valuable vistas that, in both analytical and molecular imaging NMR, could be opened by this development.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heteronuclear Polarization Transfer under Steady-State Conditions: The INEPT-SSFP Experiment\",\"authors\":\"Rihards Aleksis, Elton T. Montrazi, Lucio Frydman\",\"doi\":\"10.1021/acs.jpclett.4c02016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NMR finds a wide range of applications, ranging from fundamental chemistry to medical imaging. The technique, however, has an inherently low signal-to-noise ratio (SNR)─particularly when dealing with nuclei having low natural abundances and/or low γs. In these cases, sensitivity is often enhanced by methods that, similar to INEPT, transfer polarization from neighboring <sup>1</sup>Hs via <i>J</i>-couplings. In 1958, Carr proposed an alternative approach to increase NMR sensitivity, which involves generating and continuously detecting a steady-state transverse magnetization, by applying a train of pulses on an ensemble of noninteracting spins. This study broadens Carr’s steady-state free precession (SSFP) framework to encompass the possibility of adding onto it coherent polarization transfers, allowing one to combine the SNR-enhancing benefits of both INEPT and SSFP into a single experiment. Herein, the derivation of the ensuing INEPT-SSFP (ISSFP) sequences is reported. Their use in <sup>13</sup>C NMR and MRI experiments leads to ca. 300% improvements in SNR/ <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;unit time&lt;/mi&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span overflow=\\\"scroll\\\" style=\\\"width: 5.003em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 4.548em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.026em, 1004.55em, 2.616em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 4.548em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1003.58em, 4.151em, -999.997em); top: -3.974em; left: 0.912em;\\\"><span><span><span style=\\\"font-family: STIXMathJax_Main;\\\">unit time</span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.526em, 1003.64em, 3.923em, -999.997em); top: -4.656em; left: 0.912em;\\\"><span style=\\\"display: inline-block; position: relative; width: 3.639em; height: 0px;\\\"><span style=\\\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 3.298em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.23em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.514em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.741em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.026em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.253em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.537em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 1.764em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.048em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.276em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.503em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 2.787em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 3.014em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(2.844em, 1000.97em, 4.435em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">√</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.503em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msqrt><mrow><mi mathvariant=\\\"normal\\\">unit time</mi></mrow></msqrt></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\" overflow=\\\"scroll\\\"><msqrt><mrow><mi mathvariant=\\\"normal\\\">unit time</mi></mrow></msqrt></math></script> over conventional <i>J</i>-driven polarization transfer experiments, and sensitivity gains of over 50% over <sup>13</sup>C SSFP performed in combination with <sup>1</sup>H decoupling and NOE. These enhancements match well with numerical simulations and analytical evaluations. The conditions needed to optimize these new methods in both spectroscopic and imaging studies are discussed; we also examine their limitations, and the valuable vistas that, in both analytical and molecular imaging NMR, could be opened by this development.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02016\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02016","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振的应用范围十分广泛,从基础化学到医学成像,无所不包。然而,该技术本身信噪比(SNR)较低,尤其是在处理天然丰度较低和/或γ较低的原子核时。在这种情况下,通常采用与 INEPT 类似的方法,通过 J 耦合从邻近的 1Hs 转移极化,从而提高灵敏度。1958 年,卡尔提出了提高核磁共振灵敏度的另一种方法,即通过在非相互作用的自旋集合上施加一连串脉冲,产生并持续检测稳态横向磁化。这项研究拓宽了卡尔的稳态自由前向(SSFP)框架,使其可以加入相干极化转移,从而将 INEPT 和 SSFP 的信噪比增强优势结合到一次实验中。本文报告了 INEPT-SSFP(ISSFP)序列的推导过程。将其用于 13C NMR 和 MRI 实验,与传统的 J 驱动极化转移实验相比,信噪比/单位时间⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√单位时间单位时间提高了约 300%,与结合 1H 去耦和 NOE 进行的 13C SSFP 相比,灵敏度提高了 50%以上。这些改进与数值模拟和分析评估结果非常吻合。我们讨论了在光谱和成像研究中优化这些新方法所需的条件;我们还研究了它们的局限性,以及这一发展可能为分析和分子成像 NMR 开辟的宝贵前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heteronuclear Polarization Transfer under Steady-State Conditions: The INEPT-SSFP Experiment
NMR finds a wide range of applications, ranging from fundamental chemistry to medical imaging. The technique, however, has an inherently low signal-to-noise ratio (SNR)─particularly when dealing with nuclei having low natural abundances and/or low γs. In these cases, sensitivity is often enhanced by methods that, similar to INEPT, transfer polarization from neighboring 1Hs via J-couplings. In 1958, Carr proposed an alternative approach to increase NMR sensitivity, which involves generating and continuously detecting a steady-state transverse magnetization, by applying a train of pulses on an ensemble of noninteracting spins. This study broadens Carr’s steady-state free precession (SSFP) framework to encompass the possibility of adding onto it coherent polarization transfers, allowing one to combine the SNR-enhancing benefits of both INEPT and SSFP into a single experiment. Herein, the derivation of the ensuing INEPT-SSFP (ISSFP) sequences is reported. Their use in 13C NMR and MRI experiments leads to ca. 300% improvements in SNR/ unit time over conventional J-driven polarization transfer experiments, and sensitivity gains of over 50% over 13C SSFP performed in combination with 1H decoupling and NOE. These enhancements match well with numerical simulations and analytical evaluations. The conditions needed to optimize these new methods in both spectroscopic and imaging studies are discussed; we also examine their limitations, and the valuable vistas that, in both analytical and molecular imaging NMR, could be opened by this development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Bond Dissociation Energy of CO2 with Spectroscopic Accuracy Using State-to-State Resolved Threshold Fragment Yield Spectra. Environment- and Conformation-Induced Frequency Shifts of C-D Vibrational Stark Probes in NAD(P)H Cofactors. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. Rational Control of Maximum EMI/CPL Intensity and Wavelength of Bora[6]helicene via Polarity and Vibronic Effects. When a Twist Makes a Difference: Exploring PCET and ESIPT on a Nonplanar Hydrogen-Bonded Donor-Acceptor System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1