披露的非平衡 GB 在钨中容纳点缺陷的能力

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2024-10-10 DOI:10.1016/j.jnucmat.2024.155442
Yingchong Xu , Hongxian Xie , Guang-Hong Lu
{"title":"披露的非平衡 GB 在钨中容纳点缺陷的能力","authors":"Yingchong Xu ,&nbsp;Hongxian Xie ,&nbsp;Guang-Hong Lu","doi":"10.1016/j.jnucmat.2024.155442","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental observations reveal that disclinated non-equilibrium grain boundaries (GBs) exist extensively in polycrystalline metals; however, the interaction between these GBs and irradiation-induced point defects is rarely reported. In the present work, Molecular statics simulation was used to evaluate the capacity of disclinated non-equilibrium GBs to accommodate point defects in tungsten. Simulation results showed that disclinated non-equilibrium GBs are more efficient sinks for point defects than their equilibrium counterparts because of long-range stress field around them. Continuous segregation of point defects will change the structure of the disclinated non-equilibrium GBs and leads to the GBs tending to relax to equilibrium state. According to theoretical calculation, the disclinated non-equilibrium GBs can absorb a large number of point defects before transforming into equilibrium state; therefore, disclinated non-equilibrium GBs have very strong capacity to accommodate point defects and can be used as strong defect sinks for developing radiation resistance materials.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155442"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The capacity of disclinated non-equilibrium GBs to accommodate point defects in tungsten\",\"authors\":\"Yingchong Xu ,&nbsp;Hongxian Xie ,&nbsp;Guang-Hong Lu\",\"doi\":\"10.1016/j.jnucmat.2024.155442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Experimental observations reveal that disclinated non-equilibrium grain boundaries (GBs) exist extensively in polycrystalline metals; however, the interaction between these GBs and irradiation-induced point defects is rarely reported. In the present work, Molecular statics simulation was used to evaluate the capacity of disclinated non-equilibrium GBs to accommodate point defects in tungsten. Simulation results showed that disclinated non-equilibrium GBs are more efficient sinks for point defects than their equilibrium counterparts because of long-range stress field around them. Continuous segregation of point defects will change the structure of the disclinated non-equilibrium GBs and leads to the GBs tending to relax to equilibrium state. According to theoretical calculation, the disclinated non-equilibrium GBs can absorb a large number of point defects before transforming into equilibrium state; therefore, disclinated non-equilibrium GBs have very strong capacity to accommodate point defects and can be used as strong defect sinks for developing radiation resistance materials.</div></div>\",\"PeriodicalId\":373,\"journal\":{\"name\":\"Journal of Nuclear Materials\",\"volume\":\"603 \",\"pages\":\"Article 155442\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022311524005427\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005427","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实验观察表明,多晶金属中广泛存在着非平衡晶界(GBs);然而,这些GBs与辐照诱发的点缺陷之间的相互作用却鲜有报道。在本研究中,分子静力学模拟被用来评估披露的非平衡晶界在钨中容纳点缺陷的能力。模拟结果表明,与平衡状态下的GBs相比,非平衡状态下的GBs由于其周围存在长程应力场,因此能更有效地吸收点缺陷。点缺陷的持续偏析会改变披露非平衡 GB 的结构,导致 GB 趋向于弛豫到平衡状态。根据理论计算,分离非平衡态 GB 在转变为平衡态之前可以吸收大量的点缺陷;因此,分离非平衡态 GB 具有很强的容纳点缺陷的能力,可用作开发抗辐射材料的强缺陷汇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The capacity of disclinated non-equilibrium GBs to accommodate point defects in tungsten
Experimental observations reveal that disclinated non-equilibrium grain boundaries (GBs) exist extensively in polycrystalline metals; however, the interaction between these GBs and irradiation-induced point defects is rarely reported. In the present work, Molecular statics simulation was used to evaluate the capacity of disclinated non-equilibrium GBs to accommodate point defects in tungsten. Simulation results showed that disclinated non-equilibrium GBs are more efficient sinks for point defects than their equilibrium counterparts because of long-range stress field around them. Continuous segregation of point defects will change the structure of the disclinated non-equilibrium GBs and leads to the GBs tending to relax to equilibrium state. According to theoretical calculation, the disclinated non-equilibrium GBs can absorb a large number of point defects before transforming into equilibrium state; therefore, disclinated non-equilibrium GBs have very strong capacity to accommodate point defects and can be used as strong defect sinks for developing radiation resistance materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Editorial Board Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1