{"title":"利用飞秒激光加工和游标效应的双平行 FPI 超灵敏应变传感器","authors":"Changli Dong, Changning Liu","doi":"10.1016/j.optcom.2024.131210","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes and develops a highly sensitive fiber optic strain sensor utilizing femtosecond laser processing and the Vernier effect. The sensor features two parallel Fabry-Pérot interferometers (FPI), with each FPI consisting of an air bubble and a tapered fiber optic cascade. FPI 2 serves as the sensing cavity, while FPI 1 acts as the reference cavity. The strain sensing capability of a single FPI 2 is measured at 6.67 p.m./με, while the parallel configuration of FPI 2 with FPI 1 achieves a sensitivity of 68.3 p.m./με, resulting in an amplification of 10.24. Furthermore, the proposed sensor demonstrates excellent repeatability, low-temperature cross-sensitivity, simple fabrication, and cost-effectiveness, making it a promising tool for strain measurement applications.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive strain sensor of dual parallel FPIs utilizing femtosecond laser processing and Vernier effect\",\"authors\":\"Changli Dong, Changning Liu\",\"doi\":\"10.1016/j.optcom.2024.131210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes and develops a highly sensitive fiber optic strain sensor utilizing femtosecond laser processing and the Vernier effect. The sensor features two parallel Fabry-Pérot interferometers (FPI), with each FPI consisting of an air bubble and a tapered fiber optic cascade. FPI 2 serves as the sensing cavity, while FPI 1 acts as the reference cavity. The strain sensing capability of a single FPI 2 is measured at 6.67 p.m./με, while the parallel configuration of FPI 2 with FPI 1 achieves a sensitivity of 68.3 p.m./με, resulting in an amplification of 10.24. Furthermore, the proposed sensor demonstrates excellent repeatability, low-temperature cross-sensitivity, simple fabrication, and cost-effectiveness, making it a promising tool for strain measurement applications.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824009477\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824009477","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Ultrasensitive strain sensor of dual parallel FPIs utilizing femtosecond laser processing and Vernier effect
This study proposes and develops a highly sensitive fiber optic strain sensor utilizing femtosecond laser processing and the Vernier effect. The sensor features two parallel Fabry-Pérot interferometers (FPI), with each FPI consisting of an air bubble and a tapered fiber optic cascade. FPI 2 serves as the sensing cavity, while FPI 1 acts as the reference cavity. The strain sensing capability of a single FPI 2 is measured at 6.67 p.m./με, while the parallel configuration of FPI 2 with FPI 1 achieves a sensitivity of 68.3 p.m./με, resulting in an amplification of 10.24. Furthermore, the proposed sensor demonstrates excellent repeatability, low-temperature cross-sensitivity, simple fabrication, and cost-effectiveness, making it a promising tool for strain measurement applications.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.