多体机械系统中带有长短轴承的多重润滑接头 - 建模、模拟和性能分析

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-10-16 DOI:10.1016/j.mechmachtheory.2024.105815
Bassam J. Alshaer , Hamid M. Lankarani
{"title":"多体机械系统中带有长短轴承的多重润滑接头 - 建模、模拟和性能分析","authors":"Bassam J. Alshaer ,&nbsp;Hamid M. Lankarani","doi":"10.1016/j.mechmachtheory.2024.105815","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effect of multiple lubricated imperfect long and short bearings on the performance of a multibody mechanical system. Unlike the typical assumption of a single perfect or imperfect lubricated joint due to modeling difficulties, this research considers the practical impacts of clearances in multiple joints. While unlubricated joints generally cause significant performance issues, lubricants reduce these effects, creating more localized peaks. The findings show that as the number of lubricated joints increases, both the magnitude and frequency of these peaks rise. In systems with multiple journal bearings, torque peaks become more noticeable due to the additional degrees of freedom introduced by the clearances. These degrees of freedom amplify acceleration, leading to higher lubricant reaction forces, which in turn require greater motor torque peaks to maintain the system's kinematics. Shorter lubricated joints exhibit more severe peaks than longer ones, mainly due to side leakage causing axial pressure variation and reduced damping capacity. The study highlights the need to replace idealized joints with imperfect ones for more accurate modeling of practical systems.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"203 ","pages":"Article 105815"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple lubricated joints with long and short bearings in multibody mechanical systems - Modeling, simulation, and performance analysis\",\"authors\":\"Bassam J. Alshaer ,&nbsp;Hamid M. Lankarani\",\"doi\":\"10.1016/j.mechmachtheory.2024.105815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the effect of multiple lubricated imperfect long and short bearings on the performance of a multibody mechanical system. Unlike the typical assumption of a single perfect or imperfect lubricated joint due to modeling difficulties, this research considers the practical impacts of clearances in multiple joints. While unlubricated joints generally cause significant performance issues, lubricants reduce these effects, creating more localized peaks. The findings show that as the number of lubricated joints increases, both the magnitude and frequency of these peaks rise. In systems with multiple journal bearings, torque peaks become more noticeable due to the additional degrees of freedom introduced by the clearances. These degrees of freedom amplify acceleration, leading to higher lubricant reaction forces, which in turn require greater motor torque peaks to maintain the system's kinematics. Shorter lubricated joints exhibit more severe peaks than longer ones, mainly due to side leakage causing axial pressure variation and reduced damping capacity. The study highlights the need to replace idealized joints with imperfect ones for more accurate modeling of practical systems.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"203 \",\"pages\":\"Article 105815\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002428\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002428","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了多个润滑不完全的长短轴承对多体机械系统性能的影响。与因建模困难而通常假设的单一完美或不完美润滑接头不同,本研究考虑了多个接头间隙的实际影响。虽然未润滑的接头通常会导致严重的性能问题,但润滑剂会减少这些影响,从而产生更多局部峰值。研究结果表明,随着润滑接头数量的增加,这些峰值的幅度和频率都会上升。在具有多个轴颈轴承的系统中,由于间隙带来的额外自由度,扭矩峰值变得更加明显。这些自由度放大了加速度,导致润滑油反作用力增大,进而需要更大的电机扭矩峰值来维持系统的运动学特性。较短的润滑接头比较长的接头表现出更严重的峰值,这主要是由于侧漏导致轴向压力变化和阻尼能力降低。这项研究强调,需要用不完美的接头取代理想化的接头,以便对实际系统进行更精确的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple lubricated joints with long and short bearings in multibody mechanical systems - Modeling, simulation, and performance analysis
This study examines the effect of multiple lubricated imperfect long and short bearings on the performance of a multibody mechanical system. Unlike the typical assumption of a single perfect or imperfect lubricated joint due to modeling difficulties, this research considers the practical impacts of clearances in multiple joints. While unlubricated joints generally cause significant performance issues, lubricants reduce these effects, creating more localized peaks. The findings show that as the number of lubricated joints increases, both the magnitude and frequency of these peaks rise. In systems with multiple journal bearings, torque peaks become more noticeable due to the additional degrees of freedom introduced by the clearances. These degrees of freedom amplify acceleration, leading to higher lubricant reaction forces, which in turn require greater motor torque peaks to maintain the system's kinematics. Shorter lubricated joints exhibit more severe peaks than longer ones, mainly due to side leakage causing axial pressure variation and reduced damping capacity. The study highlights the need to replace idealized joints with imperfect ones for more accurate modeling of practical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
A methodology for investigating the influence of hydrodynamic effects in gerotor type positive displacement machines Two PRBMs of Euler spiral segments and their chained models for analyzing general curved beams in compliant mechanisms Human–Machine coupled modeling of mandibular musculoskeletal multibody system and its application in the designation of mandibular movement function trainer Multi-objective optimization design method for the dimensions and control parameters of curling hexapod robot based on application performance Bionic concept and synthesis methods of the biomimetic robot joint mechanism for accurately reproducing the motion pattern of the human knee joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1