Xinyan Tan , Lingxuan Xiong , Weimin Zhang , Zhengqing Zuo , Xiaohai He , Yi Xu , Fangxing Li
{"title":"基于机器视觉和覆盖路径规划的钢筋绑扎机器人","authors":"Xinyan Tan , Lingxuan Xiong , Weimin Zhang , Zhengqing Zuo , Xiaohai He , Yi Xu , Fangxing Li","doi":"10.1016/j.robot.2024.104826","DOIUrl":null,"url":null,"abstract":"<div><div>Automation technology can replace manual work in the traditional construction industry, improve quality and efficiency, and reduce costs. This paper developed a rebar-tying robot for tying the intersection of rebars. It proposed a Hough transform multi-segment fitting method to detect the intersections of rebars in real-time acquired RGB-D images. To cover the surface of the rebar net as much as possible under the condition of limited camera FOV, this paper designed a coverage path planning method to plan the path of the photo positions and the detected intersections of rebars efficiently and orderly. The experimental results show that the robot achieved an accuracy rate of 99.4 % in intersection detection, the detection error is within 2.8 mm, the single tying time is 1.85 s, and the average tying time is 5.5 s, which is faster than most robots. The robot realizes the task of automatically tying the intersection of rebars, which is robust and efficient, without duplication or omission.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"182 ","pages":"Article 104826"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rebar-tying Robot based on machine vision and coverage path planning\",\"authors\":\"Xinyan Tan , Lingxuan Xiong , Weimin Zhang , Zhengqing Zuo , Xiaohai He , Yi Xu , Fangxing Li\",\"doi\":\"10.1016/j.robot.2024.104826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automation technology can replace manual work in the traditional construction industry, improve quality and efficiency, and reduce costs. This paper developed a rebar-tying robot for tying the intersection of rebars. It proposed a Hough transform multi-segment fitting method to detect the intersections of rebars in real-time acquired RGB-D images. To cover the surface of the rebar net as much as possible under the condition of limited camera FOV, this paper designed a coverage path planning method to plan the path of the photo positions and the detected intersections of rebars efficiently and orderly. The experimental results show that the robot achieved an accuracy rate of 99.4 % in intersection detection, the detection error is within 2.8 mm, the single tying time is 1.85 s, and the average tying time is 5.5 s, which is faster than most robots. The robot realizes the task of automatically tying the intersection of rebars, which is robust and efficient, without duplication or omission.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"182 \",\"pages\":\"Article 104826\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889024002100\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889024002100","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Rebar-tying Robot based on machine vision and coverage path planning
Automation technology can replace manual work in the traditional construction industry, improve quality and efficiency, and reduce costs. This paper developed a rebar-tying robot for tying the intersection of rebars. It proposed a Hough transform multi-segment fitting method to detect the intersections of rebars in real-time acquired RGB-D images. To cover the surface of the rebar net as much as possible under the condition of limited camera FOV, this paper designed a coverage path planning method to plan the path of the photo positions and the detected intersections of rebars efficiently and orderly. The experimental results show that the robot achieved an accuracy rate of 99.4 % in intersection detection, the detection error is within 2.8 mm, the single tying time is 1.85 s, and the average tying time is 5.5 s, which is faster than most robots. The robot realizes the task of automatically tying the intersection of rebars, which is robust and efficient, without duplication or omission.
期刊介绍:
Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems.
Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.