Hanwen Chen , Shujun Xie , Yichen Zhou , Lin Chen , Jian Xu , Jianting Cai
{"title":"在 NLRP3 炎症小体激活过程中,MEK1/2 可促进 ROS 生成,并独立于 ERK1/2 对 NLRP3 进行去泛素化处理","authors":"Hanwen Chen , Shujun Xie , Yichen Zhou , Lin Chen , Jian Xu , Jianting Cai","doi":"10.1016/j.bcp.2024.116572","DOIUrl":null,"url":null,"abstract":"<div><div>Inflammasomes are cytosolic supramolecular complexes that play a key role in the innate immune response. Overactivation of NLR family pyrin domain containing 3 (NLRP3) inflammasome leads to multiple diseases. Post-translational modifications (PTMs) are essential modulators of inflammasomes especially in activation phase. Here we found that MEK1/2 kinase activity was indispensable in NLRP3 inflammasome activation both <em>in vitro</em> and <em>in vivo</em>. Inhibition of MEK1/2 resulted in reactive oxygen species (ROS) scavenging and ubiquitination of NLRP3, which further blocked NLRP3 inflammasome activation. These effects were independent of ERK1/2, which were classic downstream of MEK1/2. These investigations proposed a mechanism that MEK1/2 regulated inflammation via non-transcriptional regulation of NLRP3 inflammasome and might help better understanding the effects and side-effects of MEK inhibitors in clinical use.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"230 ","pages":"Article 116572"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEK1/2 promote ROS production and deubiquitinate NLRP3 independent of ERK1/2 during NLRP3 inflammasome activation\",\"authors\":\"Hanwen Chen , Shujun Xie , Yichen Zhou , Lin Chen , Jian Xu , Jianting Cai\",\"doi\":\"10.1016/j.bcp.2024.116572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inflammasomes are cytosolic supramolecular complexes that play a key role in the innate immune response. Overactivation of NLR family pyrin domain containing 3 (NLRP3) inflammasome leads to multiple diseases. Post-translational modifications (PTMs) are essential modulators of inflammasomes especially in activation phase. Here we found that MEK1/2 kinase activity was indispensable in NLRP3 inflammasome activation both <em>in vitro</em> and <em>in vivo</em>. Inhibition of MEK1/2 resulted in reactive oxygen species (ROS) scavenging and ubiquitination of NLRP3, which further blocked NLRP3 inflammasome activation. These effects were independent of ERK1/2, which were classic downstream of MEK1/2. These investigations proposed a mechanism that MEK1/2 regulated inflammation via non-transcriptional regulation of NLRP3 inflammasome and might help better understanding the effects and side-effects of MEK inhibitors in clinical use.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"230 \",\"pages\":\"Article 116572\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295224005720\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224005720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
MEK1/2 promote ROS production and deubiquitinate NLRP3 independent of ERK1/2 during NLRP3 inflammasome activation
Inflammasomes are cytosolic supramolecular complexes that play a key role in the innate immune response. Overactivation of NLR family pyrin domain containing 3 (NLRP3) inflammasome leads to multiple diseases. Post-translational modifications (PTMs) are essential modulators of inflammasomes especially in activation phase. Here we found that MEK1/2 kinase activity was indispensable in NLRP3 inflammasome activation both in vitro and in vivo. Inhibition of MEK1/2 resulted in reactive oxygen species (ROS) scavenging and ubiquitination of NLRP3, which further blocked NLRP3 inflammasome activation. These effects were independent of ERK1/2, which were classic downstream of MEK1/2. These investigations proposed a mechanism that MEK1/2 regulated inflammation via non-transcriptional regulation of NLRP3 inflammasome and might help better understanding the effects and side-effects of MEK inhibitors in clinical use.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.