Shahriar Soudeep , Most. Lailun Nahar Aurthy , Jamin Rahman Jim , M.F. Mridha , Md Mohsin Kabir
{"title":"通过变压器模型提高可持续城市的道路交通流量:进步与挑战","authors":"Shahriar Soudeep , Most. Lailun Nahar Aurthy , Jamin Rahman Jim , M.F. Mridha , Md Mohsin Kabir","doi":"10.1016/j.scs.2024.105882","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient traffic flow is crucial for sustainable cities, as it directly impacts energy consumption, pollution levels, and overall quality of life. The integration of superficial intelligence, particularly transformer models, plays a significant role in enhancing the predictive capabilities for traffic management, thereby supporting sustainable urban development. In this survey, we explored the application of transformer models to predict and optimize traffic flow in sustainable cities. These models leverage advanced machine learning to capture intricate spatiotemporal patterns,thereby providing valuable insights for urban planners and traffic management centers. By systematically reviewing the literature, we emphasize the importance of transformer models in urban planning and sustainable resource use. Our study demonstrates how transformer models can learn complex spatiotemporal patterns from traffic data by incorporating both real-time and historical data to enhance prediction accuracy. This improved predictive capability aids the development of smart cities by reducing traffic congestion, facilitating smoother movement for city dwellers and tourists, and ultimately contributing to the sustainability goals of urban areas. This comprehensive review highlights the transformative potential of predictive modeling using transformer models, underscoring their critical role in optimizing urban infrastructure and promoting sustainable city development.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"116 ","pages":"Article 105882"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing road traffic flow in sustainable cities through transformer models: Advancements and challenges\",\"authors\":\"Shahriar Soudeep , Most. Lailun Nahar Aurthy , Jamin Rahman Jim , M.F. Mridha , Md Mohsin Kabir\",\"doi\":\"10.1016/j.scs.2024.105882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient traffic flow is crucial for sustainable cities, as it directly impacts energy consumption, pollution levels, and overall quality of life. The integration of superficial intelligence, particularly transformer models, plays a significant role in enhancing the predictive capabilities for traffic management, thereby supporting sustainable urban development. In this survey, we explored the application of transformer models to predict and optimize traffic flow in sustainable cities. These models leverage advanced machine learning to capture intricate spatiotemporal patterns,thereby providing valuable insights for urban planners and traffic management centers. By systematically reviewing the literature, we emphasize the importance of transformer models in urban planning and sustainable resource use. Our study demonstrates how transformer models can learn complex spatiotemporal patterns from traffic data by incorporating both real-time and historical data to enhance prediction accuracy. This improved predictive capability aids the development of smart cities by reducing traffic congestion, facilitating smoother movement for city dwellers and tourists, and ultimately contributing to the sustainability goals of urban areas. This comprehensive review highlights the transformative potential of predictive modeling using transformer models, underscoring their critical role in optimizing urban infrastructure and promoting sustainable city development.</div></div>\",\"PeriodicalId\":48659,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":\"116 \",\"pages\":\"Article 105882\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210670724007066\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724007066","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Enhancing road traffic flow in sustainable cities through transformer models: Advancements and challenges
Efficient traffic flow is crucial for sustainable cities, as it directly impacts energy consumption, pollution levels, and overall quality of life. The integration of superficial intelligence, particularly transformer models, plays a significant role in enhancing the predictive capabilities for traffic management, thereby supporting sustainable urban development. In this survey, we explored the application of transformer models to predict and optimize traffic flow in sustainable cities. These models leverage advanced machine learning to capture intricate spatiotemporal patterns,thereby providing valuable insights for urban planners and traffic management centers. By systematically reviewing the literature, we emphasize the importance of transformer models in urban planning and sustainable resource use. Our study demonstrates how transformer models can learn complex spatiotemporal patterns from traffic data by incorporating both real-time and historical data to enhance prediction accuracy. This improved predictive capability aids the development of smart cities by reducing traffic congestion, facilitating smoother movement for city dwellers and tourists, and ultimately contributing to the sustainability goals of urban areas. This comprehensive review highlights the transformative potential of predictive modeling using transformer models, underscoring their critical role in optimizing urban infrastructure and promoting sustainable city development.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;