Cuicui Hu , Fang Tang , Lina Jiang , Yang Chen , Haifeng Chen , Zilu Xia , Yong Fang , Haicheng Xuan , Bin Qian , Zhida Han
{"title":"范德华Fe3GaTe2中各向异性的磁熵变化和磁临界行为","authors":"Cuicui Hu , Fang Tang , Lina Jiang , Yang Chen , Haifeng Chen , Zilu Xia , Yong Fang , Haicheng Xuan , Bin Qian , Zhida Han","doi":"10.1016/j.physb.2024.416615","DOIUrl":null,"url":null,"abstract":"<div><div>Fe<sub>3</sub>GaTe<sub>2</sub>, with intrinsic magnetism at ambient temperature and high perpendicular magnetic anisotropy, is a promising van der Waals material for 2D-materials-based spintronic devices. Herein, we report the anisotropic magnetocaloric effects and magnetic critical phenomena in Fe<sub>3</sub>GaTe<sub>2</sub> single crystal. Owing to the large anisotropy, magnetic entropy change <span><math><mrow><mo>(</mo><mrow><mo>−</mo><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow><mo>)</mo></mrow></math></span> shows anisotropic character with <span><math><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup></mrow></math></span> of 1.67 J kg<sup>−1</sup> K<sup>−1</sup> along the <em>c</em> axis and 1.11 J kg<sup>−1</sup> K<sup>−1</sup> in the <em>ab</em> plane under field change of 5 T. The rotating <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span> from the <em>ab</em> plane to the <em>c</em> axis reaches 0.67 J kg<sup>−1</sup> K<sup>−1</sup> at magnetic field of 5 T. By carefully fitting the <span><math><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup></mrow></math></span> and relative cooling power (RCP), we determine their relationships to be <span><math><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup><mo>∝</mo><msup><mi>H</mi><mi>n</mi></msup></mrow></math></span> (<em>n</em> = 0.694(1)) and <span><math><mrow><mi>R</mi><mi>C</mi><mi>P</mi><mo>∝</mo><msup><mi>H</mi><mi>m</mi></msup></mrow></math></span> (<em>m</em> = 1.301(3)) for the magnetic field along the <em>c</em>-axis. Further analysis of critical behavior near <em>T</em><sub><em>C</em></sub> reveals critical exponents <em>β</em> = 0.41(1) at <em>T</em><sub><em>C</em></sub> = 341.5(1) K, <em>γ</em> = 1.01(1) at <em>T</em><sub><em>C</em></sub> = 341.6(3) K, and <em>δ</em> = 3.67(15) at <em>T</em><sub><em>C</em></sub> = 340 K, indicating a three-dimensional complex magnetic exchange.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"696 ","pages":"Article 416615"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic magnetic entropy change and magnetic critical behavior in van der Waals Fe3GaTe2\",\"authors\":\"Cuicui Hu , Fang Tang , Lina Jiang , Yang Chen , Haifeng Chen , Zilu Xia , Yong Fang , Haicheng Xuan , Bin Qian , Zhida Han\",\"doi\":\"10.1016/j.physb.2024.416615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fe<sub>3</sub>GaTe<sub>2</sub>, with intrinsic magnetism at ambient temperature and high perpendicular magnetic anisotropy, is a promising van der Waals material for 2D-materials-based spintronic devices. Herein, we report the anisotropic magnetocaloric effects and magnetic critical phenomena in Fe<sub>3</sub>GaTe<sub>2</sub> single crystal. Owing to the large anisotropy, magnetic entropy change <span><math><mrow><mo>(</mo><mrow><mo>−</mo><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow><mo>)</mo></mrow></math></span> shows anisotropic character with <span><math><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup></mrow></math></span> of 1.67 J kg<sup>−1</sup> K<sup>−1</sup> along the <em>c</em> axis and 1.11 J kg<sup>−1</sup> K<sup>−1</sup> in the <em>ab</em> plane under field change of 5 T. The rotating <span><math><mrow><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span> from the <em>ab</em> plane to the <em>c</em> axis reaches 0.67 J kg<sup>−1</sup> K<sup>−1</sup> at magnetic field of 5 T. By carefully fitting the <span><math><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup></mrow></math></span> and relative cooling power (RCP), we determine their relationships to be <span><math><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup><mo>∝</mo><msup><mi>H</mi><mi>n</mi></msup></mrow></math></span> (<em>n</em> = 0.694(1)) and <span><math><mrow><mi>R</mi><mi>C</mi><mi>P</mi><mo>∝</mo><msup><mi>H</mi><mi>m</mi></msup></mrow></math></span> (<em>m</em> = 1.301(3)) for the magnetic field along the <em>c</em>-axis. Further analysis of critical behavior near <em>T</em><sub><em>C</em></sub> reveals critical exponents <em>β</em> = 0.41(1) at <em>T</em><sub><em>C</em></sub> = 341.5(1) K, <em>γ</em> = 1.01(1) at <em>T</em><sub><em>C</em></sub> = 341.6(3) K, and <em>δ</em> = 3.67(15) at <em>T</em><sub><em>C</em></sub> = 340 K, indicating a three-dimensional complex magnetic exchange.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"696 \",\"pages\":\"Article 416615\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624009566\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624009566","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
Fe3GaTe2 在常温下具有本征磁性和高垂直磁各向异性,是一种很有前途的范德华材料,可用于基于二维材料的自旋电子器件。在此,我们报告了 Fe3GaTe2 单晶的各向异性磁致效应和磁临界现象。由于存在较大的各向异性,磁熵变化(-ΔSM)呈现出各向异性的特征,在磁场变化为 5 T 时,沿 c 轴的-ΔSM 最大值为 1.67 J kg-1 K-1,在 ab 平面上为 1.11 J kg-1 K-1。通过仔细拟合-ΔSMmax 和相对冷却功率 (RCP),我们确定它们在沿 c 轴的磁场中的关系为 -ΔSMmax∝Hn (n = 0.694(1)) 和 RCP∝Hm (m = 1.301(3))。对 TC 附近临界行为的进一步分析表明,在 TC = 341.5(1) K 时,临界指数 β = 0.41(1);在 TC = 341.6(3) K 时,临界指数 γ = 1.01(1);在 TC = 340 K 时,临界指数 δ = 3.67(15),表明存在三维复合磁交换。
Anisotropic magnetic entropy change and magnetic critical behavior in van der Waals Fe3GaTe2
Fe3GaTe2, with intrinsic magnetism at ambient temperature and high perpendicular magnetic anisotropy, is a promising van der Waals material for 2D-materials-based spintronic devices. Herein, we report the anisotropic magnetocaloric effects and magnetic critical phenomena in Fe3GaTe2 single crystal. Owing to the large anisotropy, magnetic entropy change shows anisotropic character with of 1.67 J kg−1 K−1 along the c axis and 1.11 J kg−1 K−1 in the ab plane under field change of 5 T. The rotating from the ab plane to the c axis reaches 0.67 J kg−1 K−1 at magnetic field of 5 T. By carefully fitting the and relative cooling power (RCP), we determine their relationships to be (n = 0.694(1)) and (m = 1.301(3)) for the magnetic field along the c-axis. Further analysis of critical behavior near TC reveals critical exponents β = 0.41(1) at TC = 341.5(1) K, γ = 1.01(1) at TC = 341.6(3) K, and δ = 3.67(15) at TC = 340 K, indicating a three-dimensional complex magnetic exchange.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces