将极高分辨率的立体卫星图像与机载或卫星激光雷达相结合,估算桉树树冠高度

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2024-10-11 DOI:10.1016/j.srs.2024.100170
Manizheh Rajab Pourrahmati , Nicolas Baghdadi , Henrique Ferraco Scolforo , Clayton Alcarde Alvares , Jose Luiz Stape , Ibrahim Fayad , Guerric le Maire
{"title":"将极高分辨率的立体卫星图像与机载或卫星激光雷达相结合,估算桉树树冠高度","authors":"Manizheh Rajab Pourrahmati ,&nbsp;Nicolas Baghdadi ,&nbsp;Henrique Ferraco Scolforo ,&nbsp;Clayton Alcarde Alvares ,&nbsp;Jose Luiz Stape ,&nbsp;Ibrahim Fayad ,&nbsp;Guerric le Maire","doi":"10.1016/j.srs.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><div>Eucalyptus plantations cover extensive areas in tropical regions and require accurate growth monitoring for efficient management. Traditional in-situ measurements, while necessary, are labor-intensive and impractical for large-scale assessments. Very high-resolution satellite stereo imagery is playing an increasingly important role in the estimation of fine Digital Surface Models (DSMs) across landscapes. However, its ability to estimate canopy height models (CHMs) has not been widely investigated. This study investigates the integration of high-resolution satellite stereo imagery from the Pleiades sensor with airborne or satellite Lidar data to estimate canopy height over eucalyptus plantations. Two study sites were selected in Brazil, representing flat and semi-mountainous topographies, Mato Grosso do Sul (MS) and Sao Paulo (SP), respectively. Digital Surface Models generated from Pleiades images (DSM<sub>P</sub>) were combined with Digital Terrain Models extracted from airborne Lidar data (DTM<sub>ALS</sub>) to create Canopy Height Models (CHM<sub>ALS</sub>). The evaluation of the CHM<sub>ALS</sub> was based on two in situ canopy height measurements (H<sub>max</sub> and H<sub>mean</sub>). For the SP site, the CHM<sub>ALSmax</sub>, which is the average height of top 10% pixel values within each plot, correlated well with in situ H<sub>mean</sub>, which is the average height of 10 central trees (r = 0.98), showing a bias of 1.4 m, RMSE of 3.1 m, and rRMSE of 18.5%. At the MS site, CHM<sub>ALSmax</sub> demonstrated a bias of 1.9 m, RMSE of 2.3 m, rRMSE of 17.3%, and r correlation of 0.92. Despite a tendency to underestimate heights below 20 m in young tree plantations with open canopy, the results indicate reliable canopy height estimation. The study also investigates the potential of Global Ecosystem Dynamics Investigation (GEDI) elevation data as an alternative to DTM<sub>ALS</sub> in absence of airborne Lidar data. The resulting CHM<sub>Gedi</sub> is promising but slightly less accurate than Lidar-based CHMs. The best GEDI-based CHM (CHM<sub>Gedimax</sub>) showed a bias and rRMSE of 1.3 m and 20.5% for the SP site, and 2.2 m and 24.9% for the MS site. These findings highlight the potential for integrating Pleiades and Lidar data for efficient and accurate canopy height monitoring in eucalyptus plantations.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100170"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of very high-resolution stereo satellite images and airborne or satellite Lidar for Eucalyptus canopy height estimation\",\"authors\":\"Manizheh Rajab Pourrahmati ,&nbsp;Nicolas Baghdadi ,&nbsp;Henrique Ferraco Scolforo ,&nbsp;Clayton Alcarde Alvares ,&nbsp;Jose Luiz Stape ,&nbsp;Ibrahim Fayad ,&nbsp;Guerric le Maire\",\"doi\":\"10.1016/j.srs.2024.100170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Eucalyptus plantations cover extensive areas in tropical regions and require accurate growth monitoring for efficient management. Traditional in-situ measurements, while necessary, are labor-intensive and impractical for large-scale assessments. Very high-resolution satellite stereo imagery is playing an increasingly important role in the estimation of fine Digital Surface Models (DSMs) across landscapes. However, its ability to estimate canopy height models (CHMs) has not been widely investigated. This study investigates the integration of high-resolution satellite stereo imagery from the Pleiades sensor with airborne or satellite Lidar data to estimate canopy height over eucalyptus plantations. Two study sites were selected in Brazil, representing flat and semi-mountainous topographies, Mato Grosso do Sul (MS) and Sao Paulo (SP), respectively. Digital Surface Models generated from Pleiades images (DSM<sub>P</sub>) were combined with Digital Terrain Models extracted from airborne Lidar data (DTM<sub>ALS</sub>) to create Canopy Height Models (CHM<sub>ALS</sub>). The evaluation of the CHM<sub>ALS</sub> was based on two in situ canopy height measurements (H<sub>max</sub> and H<sub>mean</sub>). For the SP site, the CHM<sub>ALSmax</sub>, which is the average height of top 10% pixel values within each plot, correlated well with in situ H<sub>mean</sub>, which is the average height of 10 central trees (r = 0.98), showing a bias of 1.4 m, RMSE of 3.1 m, and rRMSE of 18.5%. At the MS site, CHM<sub>ALSmax</sub> demonstrated a bias of 1.9 m, RMSE of 2.3 m, rRMSE of 17.3%, and r correlation of 0.92. Despite a tendency to underestimate heights below 20 m in young tree plantations with open canopy, the results indicate reliable canopy height estimation. The study also investigates the potential of Global Ecosystem Dynamics Investigation (GEDI) elevation data as an alternative to DTM<sub>ALS</sub> in absence of airborne Lidar data. The resulting CHM<sub>Gedi</sub> is promising but slightly less accurate than Lidar-based CHMs. The best GEDI-based CHM (CHM<sub>Gedimax</sub>) showed a bias and rRMSE of 1.3 m and 20.5% for the SP site, and 2.2 m and 24.9% for the MS site. These findings highlight the potential for integrating Pleiades and Lidar data for efficient and accurate canopy height monitoring in eucalyptus plantations.</div></div>\",\"PeriodicalId\":101147,\"journal\":{\"name\":\"Science of Remote Sensing\",\"volume\":\"10 \",\"pages\":\"Article 100170\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666017224000543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

桉树种植园遍布热带地区,需要精确的生长监测才能进行有效管理。传统的现场测量虽然必要,但劳动密集型且不适合大规模评估。高分辨率的卫星立体图像在估算精细的地表数字模型(DSM)方面发挥着越来越重要的作用。然而,其估算冠层高度模型(CHM)的能力尚未得到广泛研究。本研究探讨了如何将 Pleiades 传感器提供的高分辨率卫星立体图像与机载或卫星激光雷达数据相结合,以估算桉树种植园的树冠高度。研究地点选在巴西的南马托格罗索州(MS)和圣保罗州(SP),分别代表平原和半山区地形。根据昴宿星图生成的数字地表模型(DSMP)与根据机载激光雷达数据提取的数字地形模型(DTMALS)相结合,创建了树冠高度模型(CHMALS)。树冠高度模型的评估基于两个现场树冠高度测量值(Hmax 和 Hmean)。在 SP 站点,CHMALSmax(每个地块内前 10% 像素值的平均高度)与原位 Hmean(10 棵中心树的平均高度)相关性良好(r = 0.98),偏差为 1.4 米,均方根误差为 3.1 米,均方根误差率为 18.5%。在 MS 站点,CHMALSmax 的偏差为 1.9 米,均方根误差为 2.3 米,rRMSE 为 17.3%,r 相关性为 0.92。尽管在树冠开阔的幼树种植园中,20 米以下的高度有被低估的趋势,但结果表明树冠高度估算是可靠的。该研究还探讨了在没有机载激光雷达数据的情况下,利用全球生态系统动态调查(GEDI)高程数据替代 DTMALS 的潜力。结果表明,CHMGedi 很有前途,但准确度略低于基于激光雷达的 CHM。基于 GEDI 的最佳 CHM(CHMGedimax)在 SP 站点的偏差和 rRMSE 分别为 1.3 米和 20.5%,在 MS 站点的偏差和 rRMSE 分别为 2.2 米和 24.9%。这些发现凸显了整合Pleiades和激光雷达数据以高效、准确地监测桉树种植园冠层高度的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of very high-resolution stereo satellite images and airborne or satellite Lidar for Eucalyptus canopy height estimation
Eucalyptus plantations cover extensive areas in tropical regions and require accurate growth monitoring for efficient management. Traditional in-situ measurements, while necessary, are labor-intensive and impractical for large-scale assessments. Very high-resolution satellite stereo imagery is playing an increasingly important role in the estimation of fine Digital Surface Models (DSMs) across landscapes. However, its ability to estimate canopy height models (CHMs) has not been widely investigated. This study investigates the integration of high-resolution satellite stereo imagery from the Pleiades sensor with airborne or satellite Lidar data to estimate canopy height over eucalyptus plantations. Two study sites were selected in Brazil, representing flat and semi-mountainous topographies, Mato Grosso do Sul (MS) and Sao Paulo (SP), respectively. Digital Surface Models generated from Pleiades images (DSMP) were combined with Digital Terrain Models extracted from airborne Lidar data (DTMALS) to create Canopy Height Models (CHMALS). The evaluation of the CHMALS was based on two in situ canopy height measurements (Hmax and Hmean). For the SP site, the CHMALSmax, which is the average height of top 10% pixel values within each plot, correlated well with in situ Hmean, which is the average height of 10 central trees (r = 0.98), showing a bias of 1.4 m, RMSE of 3.1 m, and rRMSE of 18.5%. At the MS site, CHMALSmax demonstrated a bias of 1.9 m, RMSE of 2.3 m, rRMSE of 17.3%, and r correlation of 0.92. Despite a tendency to underestimate heights below 20 m in young tree plantations with open canopy, the results indicate reliable canopy height estimation. The study also investigates the potential of Global Ecosystem Dynamics Investigation (GEDI) elevation data as an alternative to DTMALS in absence of airborne Lidar data. The resulting CHMGedi is promising but slightly less accurate than Lidar-based CHMs. The best GEDI-based CHM (CHMGedimax) showed a bias and rRMSE of 1.3 m and 20.5% for the SP site, and 2.2 m and 24.9% for the MS site. These findings highlight the potential for integrating Pleiades and Lidar data for efficient and accurate canopy height monitoring in eucalyptus plantations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Coastal vertical land motion across Southeast Asia derived from combining tide gauge and satellite altimetry observations Identifying thermokarst lakes using deep learning and high-resolution satellite images A two-stage deep learning architecture for detection global coastal and offshore submesoscale ocean eddy using SDGSAT-1 multispectral imagery A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia A comprehensive review of rice mapping from satellite data: Algorithms, product characteristics and consistency assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1