新闻署名和认知的人工智能作者:对来源和信息可信度的影响

Haiyan Jia , Alyssa Appelman , Mu Wu , Steve Bien-Aimé
{"title":"新闻署名和认知的人工智能作者:对来源和信息可信度的影响","authors":"Haiyan Jia ,&nbsp;Alyssa Appelman ,&nbsp;Mu Wu ,&nbsp;Steve Bien-Aimé","doi":"10.1016/j.chbah.2024.100093","DOIUrl":null,"url":null,"abstract":"<div><div>With emerging abilities to generate content, artificial intelligence (AI) poses a challenge to identifying authorship of news content. This study focuses on source and message credibility evaluation as AI becomes incorporated into journalistic practices. An experiment (<em>N</em> = 269) explored the effects of news bylines and AI authorship on readers’ perceptions. The findings showed that perceived AI contribution, rather than the labeling of the AI role, predicted readers’ perceptions of the source and the content. When readers thought AI contributed more to a news article, they indicated lower message credibility and source credibility perceptions. Humanness perceptions fully mediated the relationships between perceived AI contribution and perceived message credibility and source credibility. This study yielded theoretical implications for understanding readers’ mental model of machine sourceness and practical implications for newsrooms toward ethical AI in news automation and production.</div></div>","PeriodicalId":100324,"journal":{"name":"Computers in Human Behavior: Artificial Humans","volume":"2 2","pages":"Article 100093"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"News bylines and perceived AI authorship: Effects on source and message credibility\",\"authors\":\"Haiyan Jia ,&nbsp;Alyssa Appelman ,&nbsp;Mu Wu ,&nbsp;Steve Bien-Aimé\",\"doi\":\"10.1016/j.chbah.2024.100093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With emerging abilities to generate content, artificial intelligence (AI) poses a challenge to identifying authorship of news content. This study focuses on source and message credibility evaluation as AI becomes incorporated into journalistic practices. An experiment (<em>N</em> = 269) explored the effects of news bylines and AI authorship on readers’ perceptions. The findings showed that perceived AI contribution, rather than the labeling of the AI role, predicted readers’ perceptions of the source and the content. When readers thought AI contributed more to a news article, they indicated lower message credibility and source credibility perceptions. Humanness perceptions fully mediated the relationships between perceived AI contribution and perceived message credibility and source credibility. This study yielded theoretical implications for understanding readers’ mental model of machine sourceness and practical implications for newsrooms toward ethical AI in news automation and production.</div></div>\",\"PeriodicalId\":100324,\"journal\":{\"name\":\"Computers in Human Behavior: Artificial Humans\",\"volume\":\"2 2\",\"pages\":\"Article 100093\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Human Behavior: Artificial Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949882124000537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior: Artificial Humans","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949882124000537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能(AI)生成内容的能力不断增强,它对识别新闻内容的作者身份提出了挑战。本研究的重点是在人工智能融入新闻实践的过程中,对消息来源和消息可信度进行评估。一项实验(N = 269)探讨了新闻署名和人工智能作者对读者看法的影响。研究结果表明,读者对新闻来源和内容的看法取决于人工智能的贡献,而不是人工智能角色的标签。当读者认为人工智能对新闻文章的贡献更大时,他们对信息可信度和来源可信度的感知就会降低。人性化感知完全调节了感知到的人工智能贡献与感知到的信息可信度和消息来源可信度之间的关系。这项研究为理解读者对机器来源的心理模型提供了理论依据,也为新闻编辑室在新闻自动化和新闻生产中实现人工智能伦理提供了实践依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
News bylines and perceived AI authorship: Effects on source and message credibility
With emerging abilities to generate content, artificial intelligence (AI) poses a challenge to identifying authorship of news content. This study focuses on source and message credibility evaluation as AI becomes incorporated into journalistic practices. An experiment (N = 269) explored the effects of news bylines and AI authorship on readers’ perceptions. The findings showed that perceived AI contribution, rather than the labeling of the AI role, predicted readers’ perceptions of the source and the content. When readers thought AI contributed more to a news article, they indicated lower message credibility and source credibility perceptions. Humanness perceptions fully mediated the relationships between perceived AI contribution and perceived message credibility and source credibility. This study yielded theoretical implications for understanding readers’ mental model of machine sourceness and practical implications for newsrooms toward ethical AI in news automation and production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Can ChatGPT read who you are? Understanding young adults’ attitudes towards using AI chatbots for psychotherapy: The role of self-stigma Aversion against machines with complex mental abilities: The role of individual differences Differences between human and artificial/augmented intelligence in medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1