应用于分数阶 KDV-Burger 和 Sawada-Kotera 方程的自然变换迭代法和 q-homotopy 分析法的新修正

Muayyad Mahmood Khalil , Siddiq Ur Rehman , Ali Hasan Ali , Rashid Nawaz , Belal Batiha
{"title":"应用于分数阶 KDV-Burger 和 Sawada-Kotera 方程的自然变换迭代法和 q-homotopy 分析法的新修正","authors":"Muayyad Mahmood Khalil ,&nbsp;Siddiq Ur Rehman ,&nbsp;Ali Hasan Ali ,&nbsp;Rashid Nawaz ,&nbsp;Belal Batiha","doi":"10.1016/j.padiff.2024.100950","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript presents enhanced versions of two methods: the natural transform iterative method (NTIM) and the q-homotopy analysis method (q-HAM). These methods harness concepts from Fractional Calculus, particularly leveraging the Caputo fractional derivative operator, to successfully manage the complexities of fractional-order systems. To validate their accuracy and efficiency, we applied the proposed techniques to FPDEs like the fractional-order KDV-Burger and fifth-order Sawada–Kotera equations. Our outcomes, which closely resemble the exact solutions, demonstrate how useful NTIM and q-HAM are for solving difficult FPDEs and improving the study of fractional calculus.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100950"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New modifications of natural transform iterative method and q-homotopy analysis method applied to fractional order KDV-Burger and Sawada–Kotera equations\",\"authors\":\"Muayyad Mahmood Khalil ,&nbsp;Siddiq Ur Rehman ,&nbsp;Ali Hasan Ali ,&nbsp;Rashid Nawaz ,&nbsp;Belal Batiha\",\"doi\":\"10.1016/j.padiff.2024.100950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript presents enhanced versions of two methods: the natural transform iterative method (NTIM) and the q-homotopy analysis method (q-HAM). These methods harness concepts from Fractional Calculus, particularly leveraging the Caputo fractional derivative operator, to successfully manage the complexities of fractional-order systems. To validate their accuracy and efficiency, we applied the proposed techniques to FPDEs like the fractional-order KDV-Burger and fifth-order Sawada–Kotera equations. Our outcomes, which closely resemble the exact solutions, demonstrate how useful NTIM and q-HAM are for solving difficult FPDEs and improving the study of fractional calculus.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100950\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266681812400336X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266681812400336X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本手稿介绍了两种方法的增强版本:自然变换迭代法(NTIM)和 q-同调分析法(q-HAM)。这些方法利用分数微积分的概念,特别是利用卡普托分数导数算子,成功地处理了分数阶系统的复杂性。为了验证其准确性和效率,我们将所提出的技术应用于分数阶 KDV-Burger 和五阶 Sawada-Kotera 方程等 FPDE。我们的结果与精确解非常相似,这表明 NTIM 和 q-HAM 对于解决困难的 FPDE 和改进分数微积分研究非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New modifications of natural transform iterative method and q-homotopy analysis method applied to fractional order KDV-Burger and Sawada–Kotera equations
This manuscript presents enhanced versions of two methods: the natural transform iterative method (NTIM) and the q-homotopy analysis method (q-HAM). These methods harness concepts from Fractional Calculus, particularly leveraging the Caputo fractional derivative operator, to successfully manage the complexities of fractional-order systems. To validate their accuracy and efficiency, we applied the proposed techniques to FPDEs like the fractional-order KDV-Burger and fifth-order Sawada–Kotera equations. Our outcomes, which closely resemble the exact solutions, demonstrate how useful NTIM and q-HAM are for solving difficult FPDEs and improving the study of fractional calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
期刊最新文献
Combined buoyancy and Marangoni convective heat transport of CNT-water nanofluid in an open chamber with influence of magnetic field and isothermal solid block Hydromagnetic blood flow through a channel of varying width bounded by porous media of finite thickness Application of the Atangana–Baleanu operator in Caputo sense for numerical solutions of the time-fractional Burgers–Fisher equation using finite difference approaches A rational optimal block hybrid method for enhanced accuracy in solving Lane–Emden equations Multi-parameter-based Box–Behnken design for optimizing energy transfer rate of Darcy–Forchheimer drag and mixed convective nanofluid flow over a permeable vertical surface with activation energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1