通过动态曲面技术实现非线性系统的自适应规定时间神经控制

Ping Wang;Chengpu Yu;Maolong Lv;Zilong Zhao
{"title":"通过动态曲面技术实现非线性系统的自适应规定时间神经控制","authors":"Ping Wang;Chengpu Yu;Maolong Lv;Zilong Zhao","doi":"10.1109/TAI.2024.3404914","DOIUrl":null,"url":null,"abstract":"The adaptive practical prescribed-time (PPT) neural control is studied for multiinput multioutput (MIMO) nonlinear systems with unknown nonlinear functions and unknown input gain matrices. Unlike existing PPT design schemes based on backstepping, this study proposes a novel PPT control framework using the dynamic surface control (DSC) approach. First, a novel nonlinear filter (NLF) with an adaptive parameter estimator and a piecewise function is constructed to effectively compensate for filter errors and facilitate prescribed-time convergence. Based on this, a unified DSC-based adaptive PPT control algorithm, augmented with a neural networks (NNs) approximator, is developed, where NNs are used to approximate unknown nonlinear system functions. This algorithm not only addresses the inherent computational complexity explosion associated with traditional backstepping methods but also reduces the constraints on filter design parameters compared to the DSC algorithm that relies on linear filters. The simulation showcases the effectiveness and superiority of the devised scheme by employing a two-degree-of-freedom robot manipulator.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Prescribed-Time Neural Control of Nonlinear Systems via Dynamic Surface Technique\",\"authors\":\"Ping Wang;Chengpu Yu;Maolong Lv;Zilong Zhao\",\"doi\":\"10.1109/TAI.2024.3404914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adaptive practical prescribed-time (PPT) neural control is studied for multiinput multioutput (MIMO) nonlinear systems with unknown nonlinear functions and unknown input gain matrices. Unlike existing PPT design schemes based on backstepping, this study proposes a novel PPT control framework using the dynamic surface control (DSC) approach. First, a novel nonlinear filter (NLF) with an adaptive parameter estimator and a piecewise function is constructed to effectively compensate for filter errors and facilitate prescribed-time convergence. Based on this, a unified DSC-based adaptive PPT control algorithm, augmented with a neural networks (NNs) approximator, is developed, where NNs are used to approximate unknown nonlinear system functions. This algorithm not only addresses the inherent computational complexity explosion associated with traditional backstepping methods but also reduces the constraints on filter design parameters compared to the DSC algorithm that relies on linear filters. The simulation showcases the effectiveness and superiority of the devised scheme by employing a two-degree-of-freedom robot manipulator.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10538231/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10538231/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对具有未知非线性函数和未知输入增益矩阵的多输入多输出(MIMO)非线性系统,研究了自适应实用规定时间(PPT)神经控制。与现有的基于反步法的 PPT 设计方案不同,本研究提出了一种使用动态表面控制 (DSC) 方法的新型 PPT 控制框架。首先,构建了一个带有自适应参数估计器和片断函数的新型非线性滤波器(NLF),以有效补偿滤波器误差并促进规定时间收敛。在此基础上,开发了一种基于 DSC 的统一自适应 PPT 控制算法,该算法使用神经网络(NNs)近似器进行增强,其中 NNs 用于近似未知的非线性系统函数。与依赖线性滤波器的 DSC 算法相比,该算法不仅解决了传统反步法固有的计算复杂度爆炸问题,还减少了对滤波器设计参数的限制。模拟仿真采用了一个两自由度机器人机械手,展示了所设计方案的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Prescribed-Time Neural Control of Nonlinear Systems via Dynamic Surface Technique
The adaptive practical prescribed-time (PPT) neural control is studied for multiinput multioutput (MIMO) nonlinear systems with unknown nonlinear functions and unknown input gain matrices. Unlike existing PPT design schemes based on backstepping, this study proposes a novel PPT control framework using the dynamic surface control (DSC) approach. First, a novel nonlinear filter (NLF) with an adaptive parameter estimator and a piecewise function is constructed to effectively compensate for filter errors and facilitate prescribed-time convergence. Based on this, a unified DSC-based adaptive PPT control algorithm, augmented with a neural networks (NNs) approximator, is developed, where NNs are used to approximate unknown nonlinear system functions. This algorithm not only addresses the inherent computational complexity explosion associated with traditional backstepping methods but also reduces the constraints on filter design parameters compared to the DSC algorithm that relies on linear filters. The simulation showcases the effectiveness and superiority of the devised scheme by employing a two-degree-of-freedom robot manipulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1