为长尾视觉识别调整高斯形式的 Logit

Mengke Li;Yiu-ming Cheung;Yang Lu;Zhikai Hu;Weichao Lan;Hui Huang
{"title":"为长尾视觉识别调整高斯形式的 Logit","authors":"Mengke Li;Yiu-ming Cheung;Yang Lu;Zhikai Hu;Weichao Lan;Hui Huang","doi":"10.1109/TAI.2024.3401102","DOIUrl":null,"url":null,"abstract":"It is not uncommon that real-world data are distributed with a long tail. For such data, the learning of deep neural networks becomes challenging because it is hard to classify tail classes correctly. In the literature, several existing methods have addressed this problem by reducing classifier bias, provided that the features obtained with long-tailed data are representative enough. However, we find that training directly on long-tailed data leads to uneven embedding space. That is, the embedding space of head classes severely compresses that of tail classes, which is not conducive to subsequent classifier learning. This article therefore studies the problem of long-tailed visual recognition from the perspective of feature level. We introduce feature augmentation to balance the embedding distribution. The features of different classes are perturbed with varying amplitudes in Gaussian form. Based on these perturbed features, two novel logit adjustment methods are proposed to improve model performance at a modest computational overhead. Subsequently, the distorted embedding spaces of all classes can be calibrated. In such balanced-distributed embedding spaces, the biased classifier can be eliminated by simply retraining the classifier with class-balanced sampling data. Extensive experiments conducted on benchmark datasets demonstrate the superior performance of the proposed method over the state-of-the-art ones.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531112","citationCount":"0","resultStr":"{\"title\":\"Adjusting Logit in Gaussian Form for Long-Tailed Visual Recognition\",\"authors\":\"Mengke Li;Yiu-ming Cheung;Yang Lu;Zhikai Hu;Weichao Lan;Hui Huang\",\"doi\":\"10.1109/TAI.2024.3401102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is not uncommon that real-world data are distributed with a long tail. For such data, the learning of deep neural networks becomes challenging because it is hard to classify tail classes correctly. In the literature, several existing methods have addressed this problem by reducing classifier bias, provided that the features obtained with long-tailed data are representative enough. However, we find that training directly on long-tailed data leads to uneven embedding space. That is, the embedding space of head classes severely compresses that of tail classes, which is not conducive to subsequent classifier learning. This article therefore studies the problem of long-tailed visual recognition from the perspective of feature level. We introduce feature augmentation to balance the embedding distribution. The features of different classes are perturbed with varying amplitudes in Gaussian form. Based on these perturbed features, two novel logit adjustment methods are proposed to improve model performance at a modest computational overhead. Subsequently, the distorted embedding spaces of all classes can be calibrated. In such balanced-distributed embedding spaces, the biased classifier can be eliminated by simply retraining the classifier with class-balanced sampling data. Extensive experiments conducted on benchmark datasets demonstrate the superior performance of the proposed method over the state-of-the-art ones.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10531112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10531112/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10531112/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现实世界中的数据分布带有长尾的情况并不少见。对于这类数据,深度神经网络的学习变得具有挑战性,因为很难对尾部类别进行正确分类。在文献中,已有几种方法通过减少分类器偏差来解决这一问题,前提是长尾数据获得的特征具有足够的代表性。然而,我们发现直接对长尾数据进行训练会导致嵌入空间不均匀。也就是说,头部类的嵌入空间严重压缩了尾部类的嵌入空间,这不利于后续的分类器学习。因此,本文从特征水平的角度研究了长尾视觉识别问题。我们引入特征增强来平衡嵌入分布。不同类别的特征会以高斯形式受到不同幅度的扰动。基于这些扰动特征,我们提出了两种新颖的 logit 调整方法,以适度的计算开销提高模型性能。随后,可以校准所有类别的扭曲嵌入空间。在这种平衡分布的嵌入空间中,只需使用类别平衡的采样数据重新训练分类器,就能消除有偏差的分类器。在基准数据集上进行的大量实验证明,所提出的方法比最先进的方法性能更优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adjusting Logit in Gaussian Form for Long-Tailed Visual Recognition
It is not uncommon that real-world data are distributed with a long tail. For such data, the learning of deep neural networks becomes challenging because it is hard to classify tail classes correctly. In the literature, several existing methods have addressed this problem by reducing classifier bias, provided that the features obtained with long-tailed data are representative enough. However, we find that training directly on long-tailed data leads to uneven embedding space. That is, the embedding space of head classes severely compresses that of tail classes, which is not conducive to subsequent classifier learning. This article therefore studies the problem of long-tailed visual recognition from the perspective of feature level. We introduce feature augmentation to balance the embedding distribution. The features of different classes are perturbed with varying amplitudes in Gaussian form. Based on these perturbed features, two novel logit adjustment methods are proposed to improve model performance at a modest computational overhead. Subsequently, the distorted embedding spaces of all classes can be calibrated. In such balanced-distributed embedding spaces, the biased classifier can be eliminated by simply retraining the classifier with class-balanced sampling data. Extensive experiments conducted on benchmark datasets demonstrate the superior performance of the proposed method over the state-of-the-art ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1