在拒绝服务攻击下利用库普曼算子为网络化核磁共振提供弹性编队控制

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-08-29 DOI:10.1109/TSMC.2024.3445109
Weiwei Zhan;Zhiqiang Miao;Hui Zhang;Yanjie Chen;Zheng-Guang Wu;Wei He;Yaonan Wang
{"title":"在拒绝服务攻击下利用库普曼算子为网络化核磁共振提供弹性编队控制","authors":"Weiwei Zhan;Zhiqiang Miao;Hui Zhang;Yanjie Chen;Zheng-Guang Wu;Wei He;Yaonan Wang","doi":"10.1109/TSMC.2024.3445109","DOIUrl":null,"url":null,"abstract":"This article presents a resilient formation control framework for networked nonholonomic mobile robots (NMRs) that enables long-time recovery abilities subject to denial-of-service (DoS) attacks by taking advantage of the Koopman operator. Due to the intermittent interruption of communication under DoS, the transmitted signals among the networked NMRs are incomplete. In the lifted space, the infinite-dimensional Koopman operator is employed to capture a linear characteristic of the missed signals from the available signals. Specifically, a data-driven cost function is developed to approximate the infinite-dimensional Koopman operator, allowing long-term recovery capabilities for the missed signals, where the useful historical data is identified by an event-triggered mechanism (ETM). Then, the least-squares method is implemented to calculate a finite-dimensional approximation of the Koopman operator. Once DoS attacks are active, the missed signals are recovered forward from the latest received signals through the approximation Koopman operator. Furthermore, according to the recovered and transmitted signals, the resilient formation controller with a variable gain takes into account the convergence rate and the steady state formation error. The Lyapunov theorem is introduced to prove that the formation error quickly converges to the minor compact set. A distributed DoS attack example is conducted to validate the efficiency and superiority in numerical simulation, and the proposed method is implemented on the real networked NMRs.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilient Formation Control With Koopman Operator for Networked NMRs Under Denial-of-Service Attacks\",\"authors\":\"Weiwei Zhan;Zhiqiang Miao;Hui Zhang;Yanjie Chen;Zheng-Guang Wu;Wei He;Yaonan Wang\",\"doi\":\"10.1109/TSMC.2024.3445109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a resilient formation control framework for networked nonholonomic mobile robots (NMRs) that enables long-time recovery abilities subject to denial-of-service (DoS) attacks by taking advantage of the Koopman operator. Due to the intermittent interruption of communication under DoS, the transmitted signals among the networked NMRs are incomplete. In the lifted space, the infinite-dimensional Koopman operator is employed to capture a linear characteristic of the missed signals from the available signals. Specifically, a data-driven cost function is developed to approximate the infinite-dimensional Koopman operator, allowing long-term recovery capabilities for the missed signals, where the useful historical data is identified by an event-triggered mechanism (ETM). Then, the least-squares method is implemented to calculate a finite-dimensional approximation of the Koopman operator. Once DoS attacks are active, the missed signals are recovered forward from the latest received signals through the approximation Koopman operator. Furthermore, according to the recovered and transmitted signals, the resilient formation controller with a variable gain takes into account the convergence rate and the steady state formation error. The Lyapunov theorem is introduced to prove that the formation error quickly converges to the minor compact set. A distributed DoS attack example is conducted to validate the efficiency and superiority in numerical simulation, and the proposed method is implemented on the real networked NMRs.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659151/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10659151/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于网络化非全局移动机器人(NMR)的弹性编队控制框架,该框架利用库普曼算子(Koopman operator)的优势,可在受到拒绝服务(DoS)攻击时实现长时间恢复能力。由于在 DoS 攻击下通信会间歇性中断,联网的 NMR 之间传输的信号是不完整的。在提升空间中,采用无穷维 Koopman 算子从可用信号中捕捉遗漏信号的线性特征。具体来说,我们开发了一个数据驱动的成本函数来近似无穷维 Koopman 算子,从而实现对遗漏信号的长期恢复能力,其中有用的历史数据由事件触发机制 (ETM) 识别。然后,采用最小二乘法计算库普曼算子的有限维近似值。一旦 DoS 攻击激活,就会通过近似库普曼算子从最新接收到的信号中向前恢复错过的信号。此外,根据恢复和传输的信号,具有可变增益的弹性编队控制器会考虑收敛速率和稳态编队误差。通过引入 Lyapunov 定理,证明了编队误差会快速收敛到次要紧凑集。通过一个分布式 DoS 攻击实例验证了数值模拟的效率和优越性,并在实际网络化 NMR 上实现了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilient Formation Control With Koopman Operator for Networked NMRs Under Denial-of-Service Attacks
This article presents a resilient formation control framework for networked nonholonomic mobile robots (NMRs) that enables long-time recovery abilities subject to denial-of-service (DoS) attacks by taking advantage of the Koopman operator. Due to the intermittent interruption of communication under DoS, the transmitted signals among the networked NMRs are incomplete. In the lifted space, the infinite-dimensional Koopman operator is employed to capture a linear characteristic of the missed signals from the available signals. Specifically, a data-driven cost function is developed to approximate the infinite-dimensional Koopman operator, allowing long-term recovery capabilities for the missed signals, where the useful historical data is identified by an event-triggered mechanism (ETM). Then, the least-squares method is implemented to calculate a finite-dimensional approximation of the Koopman operator. Once DoS attacks are active, the missed signals are recovered forward from the latest received signals through the approximation Koopman operator. Furthermore, according to the recovered and transmitted signals, the resilient formation controller with a variable gain takes into account the convergence rate and the steady state formation error. The Lyapunov theorem is introduced to prove that the formation error quickly converges to the minor compact set. A distributed DoS attack example is conducted to validate the efficiency and superiority in numerical simulation, and the proposed method is implemented on the real networked NMRs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents Guest Editorial Enabling Technologies and Systems for Industry 5.0: From Foundation Models to Foundation Intelligence IEEE Transactions on Systems, Man, and Cybernetics publication information IEEE Transactions on Systems, Man, and Cybernetics publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1