多跳网络中的双向量子受控远传:通过噪声信道的任意 n 量子比特态通用协议

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2024-10-17 DOI:10.1007/s11128-024-04561-0
Yousef Mafi, Ali Kookani, Hossein Aghababa, Masoud Barati, Mohammadreza Kolahdouz
{"title":"多跳网络中的双向量子受控远传:通过噪声信道的任意 n 量子比特态通用协议","authors":"Yousef Mafi,&nbsp;Ali Kookani,&nbsp;Hossein Aghababa,&nbsp;Masoud Barati,&nbsp;Mohammadreza Kolahdouz","doi":"10.1007/s11128-024-04561-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a bidirectional quantum controlled teleportation (BQCT) protocol within a multi-hop communication network, designed to teleport an arbitrary <span>\\(n\\)</span>-qubit state through an <span>\\(m\\)</span>-hop network framework. Utilizing the IBM Quantum (IBMQ) Experience simulation framework and the Qiskit library, we empirically substantiate the protocol's efficacy. Our findings indicate consistent teleportation across varying hop counts, though the precision of the output state diminishes with an increase in hops. This research further delves into the impact of quantum noise—namely amplitude-damping, phase-damping, bit-flip, and phase-flip—on the protocol's performance. A significant finding is that the detrimental effects of quantum noise escalate with the number of hops, with noise influence showing independence from the input state and causing an exponential decrease in output state fidelity. Thus, our analysis suggests a potential for optimizing real quantum communication systems through a balance between error reduction strategies and the maximum tolerable noise level.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bidirectional quantum controlled teleportation in multi-hop networks: a generalized protocol for the arbitrary n-qubit state through the noisy channel\",\"authors\":\"Yousef Mafi,&nbsp;Ali Kookani,&nbsp;Hossein Aghababa,&nbsp;Masoud Barati,&nbsp;Mohammadreza Kolahdouz\",\"doi\":\"10.1007/s11128-024-04561-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a bidirectional quantum controlled teleportation (BQCT) protocol within a multi-hop communication network, designed to teleport an arbitrary <span>\\\\(n\\\\)</span>-qubit state through an <span>\\\\(m\\\\)</span>-hop network framework. Utilizing the IBM Quantum (IBMQ) Experience simulation framework and the Qiskit library, we empirically substantiate the protocol's efficacy. Our findings indicate consistent teleportation across varying hop counts, though the precision of the output state diminishes with an increase in hops. This research further delves into the impact of quantum noise—namely amplitude-damping, phase-damping, bit-flip, and phase-flip—on the protocol's performance. A significant finding is that the detrimental effects of quantum noise escalate with the number of hops, with noise influence showing independence from the input state and causing an exponential decrease in output state fidelity. Thus, our analysis suggests a potential for optimizing real quantum communication systems through a balance between error reduction strategies and the maximum tolerable noise level.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04561-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04561-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种多跳通信网络中的双向量子控制远传(BQCT)协议,旨在通过一个(m/)-跳网络框架远传一个任意的(n/)-量子比特态。利用IBM量子(IBMQ)体验模拟框架和Qiskit库,我们从经验上证实了该协议的有效性。我们的研究结果表明,尽管输出状态的精确度会随着跳数的增加而降低,但在不同跳数的情况下,远距传输的效果是一致的。这项研究进一步深入探讨了量子噪声(即振幅阻尼、相位阻尼、比特翻转和相位翻转)对协议性能的影响。一个重要发现是,量子噪声的有害影响随着跳数的增加而加剧,噪声的影响与输入状态无关,并导致输出状态保真度呈指数下降。因此,我们的分析表明,通过在减少误差策略和最大可容忍噪声水平之间取得平衡,有可能优化真实的量子通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bidirectional quantum controlled teleportation in multi-hop networks: a generalized protocol for the arbitrary n-qubit state through the noisy channel

This paper introduces a bidirectional quantum controlled teleportation (BQCT) protocol within a multi-hop communication network, designed to teleport an arbitrary \(n\)-qubit state through an \(m\)-hop network framework. Utilizing the IBM Quantum (IBMQ) Experience simulation framework and the Qiskit library, we empirically substantiate the protocol's efficacy. Our findings indicate consistent teleportation across varying hop counts, though the precision of the output state diminishes with an increase in hops. This research further delves into the impact of quantum noise—namely amplitude-damping, phase-damping, bit-flip, and phase-flip—on the protocol's performance. A significant finding is that the detrimental effects of quantum noise escalate with the number of hops, with noise influence showing independence from the input state and causing an exponential decrease in output state fidelity. Thus, our analysis suggests a potential for optimizing real quantum communication systems through a balance between error reduction strategies and the maximum tolerable noise level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
Fast generation of GHZ state by designing the evolution operators with Rydberg superatom Quantum conference key agreement with phase noise resistance A privacy-preserving quantum authentication for vehicular communication Layered quantum secret sharing scheme for private data in cloud environment system Performance analysis and modeling for quantum computing simulation on distributed GPU platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1