Ruiyue Zhao, Jinhua Chen, Ting Ye, Jianmin Chu, Jingwen Li, Yan Zhang, Siran Xu, Shaoyu Liu, Ling Chen, Karl Ploessl, David Alexoff, Hank F. Kung, Lin Zhu, Xinlu Wang
{"title":"新型 VMAT2 示踪剂 D6-[18F]FP-(+)-DTBZ 的首次人体研究:全身生物分布和脑 PET 与 [18F]FP-(+)-DTBZ (AV-133) 的比较","authors":"Ruiyue Zhao, Jinhua Chen, Ting Ye, Jianmin Chu, Jingwen Li, Yan Zhang, Siran Xu, Shaoyu Liu, Ling Chen, Karl Ploessl, David Alexoff, Hank F. Kung, Lin Zhu, Xinlu Wang","doi":"10.1186/s41181-024-00301-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>In the central nervous system, type 2 vesicular monoamine transporters (VMAT2) are responsible for the reuptake of monoamines from synaptic junction back to pre-synaptic terminal vesicles. These transporters are functionally crucial as they reflect the integrity of monoamine neurons. D6-[<sup>18</sup>F]FP-(+)-DTBZ, a novel deuterated VMAT2 radioligand, has shown promise as a potential PET tracer for the diagnosis of Parkinson’s disease (PD). This study evaluates the biodistribution and dosimetry of D6-[<sup>18</sup>F]FP-(+)-DTBZ and includes a head-to-head comparison with its non-deuterated version, [<sup>18</sup>F]FP-(+)-DTBZ (AV-133), in healthy individuals and PD patients.</p><h3>Results</h3><p>The automated synthesis of D6-[<sup>18</sup>F]FP-(+)-DTBZ using the SPE method was accomplished in 35 min, yielding a high radiochemical purity (> 99%) and high radiochemical yields (35 ± 5%). The biodistribution and dosimetry study indicated an effective dose of 37.1 ± 7.2 μSv/MBq, with the liver receiving the highest radiation dose (289.6 ± 42.1 μGy/MBq), followed by pancreas (185.2 ± 29.1 μGy/MBq). Brain imaging with D6-[<sup>18</sup>F]FP-(+)-DTBZ exhibited a significantly increased uptake in VMAT2-rich regions, particularly the striatum. In a head-to-head comparison between [<sup>18</sup>F]FP-(+)-DTBZ and D6-[<sup>18</sup>F]FP-(+)-DTBZ, the latter exhibited approximately 15% higher SUVR in the caudate, putamen, and nucleus accumbens. Preliminary studies in PD patients showed a substantial reduction in VMAT2 uptake in the striatum, with the most pronounced decrease observed in the putamen (a 53% decline).</p><h3>Conclusions</h3><p>D6-[<sup>18</sup>F]FP-(+)-DTBZ is a safe and improved VMAT2-specific imaging agent, which may be suitable for diagnosing PD by evaluating changes in VMAT2 binding of monoamine neurons in the brain.</p><p><i>Trial registration</i> Chinese Clinical Trial Registry, ChiCTR2200057218, Registered 16 August 2021, https://www.chictr.org.cn/bin/project/edit?pid=142725.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00301-y","citationCount":"0","resultStr":"{\"title\":\"First-in-human study of D6-[18F]FP-(+)-DTBZ, a novel VMAT2 tracer: whole-body biodistribution and brain PET comparison with [18F]FP-(+)-DTBZ (AV-133)\",\"authors\":\"Ruiyue Zhao, Jinhua Chen, Ting Ye, Jianmin Chu, Jingwen Li, Yan Zhang, Siran Xu, Shaoyu Liu, Ling Chen, Karl Ploessl, David Alexoff, Hank F. Kung, Lin Zhu, Xinlu Wang\",\"doi\":\"10.1186/s41181-024-00301-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>In the central nervous system, type 2 vesicular monoamine transporters (VMAT2) are responsible for the reuptake of monoamines from synaptic junction back to pre-synaptic terminal vesicles. These transporters are functionally crucial as they reflect the integrity of monoamine neurons. D6-[<sup>18</sup>F]FP-(+)-DTBZ, a novel deuterated VMAT2 radioligand, has shown promise as a potential PET tracer for the diagnosis of Parkinson’s disease (PD). This study evaluates the biodistribution and dosimetry of D6-[<sup>18</sup>F]FP-(+)-DTBZ and includes a head-to-head comparison with its non-deuterated version, [<sup>18</sup>F]FP-(+)-DTBZ (AV-133), in healthy individuals and PD patients.</p><h3>Results</h3><p>The automated synthesis of D6-[<sup>18</sup>F]FP-(+)-DTBZ using the SPE method was accomplished in 35 min, yielding a high radiochemical purity (> 99%) and high radiochemical yields (35 ± 5%). The biodistribution and dosimetry study indicated an effective dose of 37.1 ± 7.2 μSv/MBq, with the liver receiving the highest radiation dose (289.6 ± 42.1 μGy/MBq), followed by pancreas (185.2 ± 29.1 μGy/MBq). Brain imaging with D6-[<sup>18</sup>F]FP-(+)-DTBZ exhibited a significantly increased uptake in VMAT2-rich regions, particularly the striatum. In a head-to-head comparison between [<sup>18</sup>F]FP-(+)-DTBZ and D6-[<sup>18</sup>F]FP-(+)-DTBZ, the latter exhibited approximately 15% higher SUVR in the caudate, putamen, and nucleus accumbens. Preliminary studies in PD patients showed a substantial reduction in VMAT2 uptake in the striatum, with the most pronounced decrease observed in the putamen (a 53% decline).</p><h3>Conclusions</h3><p>D6-[<sup>18</sup>F]FP-(+)-DTBZ is a safe and improved VMAT2-specific imaging agent, which may be suitable for diagnosing PD by evaluating changes in VMAT2 binding of monoamine neurons in the brain.</p><p><i>Trial registration</i> Chinese Clinical Trial Registry, ChiCTR2200057218, Registered 16 August 2021, https://www.chictr.org.cn/bin/project/edit?pid=142725.</p></div>\",\"PeriodicalId\":534,\"journal\":{\"name\":\"EJNMMI Radiopharmacy and Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00301-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Radiopharmacy and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41181-024-00301-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00301-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
First-in-human study of D6-[18F]FP-(+)-DTBZ, a novel VMAT2 tracer: whole-body biodistribution and brain PET comparison with [18F]FP-(+)-DTBZ (AV-133)
Background
In the central nervous system, type 2 vesicular monoamine transporters (VMAT2) are responsible for the reuptake of monoamines from synaptic junction back to pre-synaptic terminal vesicles. These transporters are functionally crucial as they reflect the integrity of monoamine neurons. D6-[18F]FP-(+)-DTBZ, a novel deuterated VMAT2 radioligand, has shown promise as a potential PET tracer for the diagnosis of Parkinson’s disease (PD). This study evaluates the biodistribution and dosimetry of D6-[18F]FP-(+)-DTBZ and includes a head-to-head comparison with its non-deuterated version, [18F]FP-(+)-DTBZ (AV-133), in healthy individuals and PD patients.
Results
The automated synthesis of D6-[18F]FP-(+)-DTBZ using the SPE method was accomplished in 35 min, yielding a high radiochemical purity (> 99%) and high radiochemical yields (35 ± 5%). The biodistribution and dosimetry study indicated an effective dose of 37.1 ± 7.2 μSv/MBq, with the liver receiving the highest radiation dose (289.6 ± 42.1 μGy/MBq), followed by pancreas (185.2 ± 29.1 μGy/MBq). Brain imaging with D6-[18F]FP-(+)-DTBZ exhibited a significantly increased uptake in VMAT2-rich regions, particularly the striatum. In a head-to-head comparison between [18F]FP-(+)-DTBZ and D6-[18F]FP-(+)-DTBZ, the latter exhibited approximately 15% higher SUVR in the caudate, putamen, and nucleus accumbens. Preliminary studies in PD patients showed a substantial reduction in VMAT2 uptake in the striatum, with the most pronounced decrease observed in the putamen (a 53% decline).
Conclusions
D6-[18F]FP-(+)-DTBZ is a safe and improved VMAT2-specific imaging agent, which may be suitable for diagnosing PD by evaluating changes in VMAT2 binding of monoamine neurons in the brain.
Trial registration Chinese Clinical Trial Registry, ChiCTR2200057218, Registered 16 August 2021, https://www.chictr.org.cn/bin/project/edit?pid=142725.