Dr. Federico Brombin, Dr. Gioele Pagot, Prof. Keti Vezzù, Dr. Raul San Roman, Prof. Cynthia Susana Martinez Cisneros, Dr. Nieves Ureña, Prof. Alejandro Varez, Prof. Jean-Yves Sanchez, Prof. Vito Di Noto
{"title":"用于二次电池的交联 Ca-POE 聚合物电解质的结构和电导率","authors":"Dr. Federico Brombin, Dr. Gioele Pagot, Prof. Keti Vezzù, Dr. Raul San Roman, Prof. Cynthia Susana Martinez Cisneros, Dr. Nieves Ureña, Prof. Alejandro Varez, Prof. Jean-Yves Sanchez, Prof. Vito Di Noto","doi":"10.1002/celc.202400315","DOIUrl":null,"url":null,"abstract":"<p>Poly(oxyethylene) (POE) is frequently used as suitable component to prepare solid polymer electrolytes (SPEs), due to its: (i) ability to coordinate and dissociate doping salts; (ii) good mechanical properties; and (iii) high chemical and electrochemical stability. With the aim to obtain calcium secondary batteries, here we describe the preparation and studies of crosslinked Ca-polycondensate (NPCY) electrolytes with formula NPCY/(CaTf<sub>2</sub>)<sub>x</sub> based on fragments of POE chains and CaTf<sub>2</sub>. The molecular weight of POE precursors is Y=400 and 1000 g ⋅ mol<sup>−1</sup>. The effect of POE molecular weight on the thermal, structural, and electrical properties of NPCY/(CaTf<sub>2</sub>)<sub>x</sub> is investigated revealing that in mesoscale this materials show: (i) two different nanodomains with polyether chains both <i>“free”</i> (not coordinating the cation) and involved in 4–4 coordination cages of Ca<sup>2+</sup> metal ions; (ii) <i>f</i><sub>α-fast</sub>, <i>f</i><sub>α-cross</sub> and <i>f</i><sub>α-slow</sub> relaxation modes of polyether chains, detected by broadband electrical spectroscopy, which are coupled with the long-range charge migration pathways of SPEs; (iii) that triflate (Tf<sup>−</sup>) anions, which act as plasticizers, modulate the inter-chain migration processes of Ca<sup>2+</sup> between polyether coordination sites. Finally, the conductivity values of NPCY/(CaTf<sub>2</sub>)<sub>x</sub>, which is up to 10<sup>−4</sup> S ⋅ cm<sup>−1</sup> at 80 °C, classify NPCY/(CaTf<sub>2</sub>)<sub>x</sub> as promising SPEs for the development of calcium secondary batteries.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 20","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400315","citationCount":"0","resultStr":"{\"title\":\"Structure and Conductivity of Crosslinked Ca-POE Polymer Electrolytes for Secondary Batteries\",\"authors\":\"Dr. Federico Brombin, Dr. Gioele Pagot, Prof. Keti Vezzù, Dr. Raul San Roman, Prof. Cynthia Susana Martinez Cisneros, Dr. Nieves Ureña, Prof. Alejandro Varez, Prof. Jean-Yves Sanchez, Prof. Vito Di Noto\",\"doi\":\"10.1002/celc.202400315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Poly(oxyethylene) (POE) is frequently used as suitable component to prepare solid polymer electrolytes (SPEs), due to its: (i) ability to coordinate and dissociate doping salts; (ii) good mechanical properties; and (iii) high chemical and electrochemical stability. With the aim to obtain calcium secondary batteries, here we describe the preparation and studies of crosslinked Ca-polycondensate (NPCY) electrolytes with formula NPCY/(CaTf<sub>2</sub>)<sub>x</sub> based on fragments of POE chains and CaTf<sub>2</sub>. The molecular weight of POE precursors is Y=400 and 1000 g ⋅ mol<sup>−1</sup>. The effect of POE molecular weight on the thermal, structural, and electrical properties of NPCY/(CaTf<sub>2</sub>)<sub>x</sub> is investigated revealing that in mesoscale this materials show: (i) two different nanodomains with polyether chains both <i>“free”</i> (not coordinating the cation) and involved in 4–4 coordination cages of Ca<sup>2+</sup> metal ions; (ii) <i>f</i><sub>α-fast</sub>, <i>f</i><sub>α-cross</sub> and <i>f</i><sub>α-slow</sub> relaxation modes of polyether chains, detected by broadband electrical spectroscopy, which are coupled with the long-range charge migration pathways of SPEs; (iii) that triflate (Tf<sup>−</sup>) anions, which act as plasticizers, modulate the inter-chain migration processes of Ca<sup>2+</sup> between polyether coordination sites. Finally, the conductivity values of NPCY/(CaTf<sub>2</sub>)<sub>x</sub>, which is up to 10<sup>−4</sup> S ⋅ cm<sup>−1</sup> at 80 °C, classify NPCY/(CaTf<sub>2</sub>)<sub>x</sub> as promising SPEs for the development of calcium secondary batteries.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 20\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400315\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400315","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Structure and Conductivity of Crosslinked Ca-POE Polymer Electrolytes for Secondary Batteries
Poly(oxyethylene) (POE) is frequently used as suitable component to prepare solid polymer electrolytes (SPEs), due to its: (i) ability to coordinate and dissociate doping salts; (ii) good mechanical properties; and (iii) high chemical and electrochemical stability. With the aim to obtain calcium secondary batteries, here we describe the preparation and studies of crosslinked Ca-polycondensate (NPCY) electrolytes with formula NPCY/(CaTf2)x based on fragments of POE chains and CaTf2. The molecular weight of POE precursors is Y=400 and 1000 g ⋅ mol−1. The effect of POE molecular weight on the thermal, structural, and electrical properties of NPCY/(CaTf2)x is investigated revealing that in mesoscale this materials show: (i) two different nanodomains with polyether chains both “free” (not coordinating the cation) and involved in 4–4 coordination cages of Ca2+ metal ions; (ii) fα-fast, fα-cross and fα-slow relaxation modes of polyether chains, detected by broadband electrical spectroscopy, which are coupled with the long-range charge migration pathways of SPEs; (iii) that triflate (Tf−) anions, which act as plasticizers, modulate the inter-chain migration processes of Ca2+ between polyether coordination sites. Finally, the conductivity values of NPCY/(CaTf2)x, which is up to 10−4 S ⋅ cm−1 at 80 °C, classify NPCY/(CaTf2)x as promising SPEs for the development of calcium secondary batteries.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.