用遗传算法为眼底图像分类中的卷积神经网络寻找鉴别区域

Yibiao Rong;Tian Lin;Haoyu Chen;Zhun Fan;Xinjian Chen
{"title":"用遗传算法为眼底图像分类中的卷积神经网络寻找鉴别区域","authors":"Yibiao Rong;Tian Lin;Haoyu Chen;Zhun Fan;Xinjian Chen","doi":"10.1109/TIP.2024.3477932","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks (CNNs) have been widely used for fundus image classification and have achieved very impressive performance. However, the explainability of CNNs is poor because of their black-box nature, which limits their application in clinical practice. In this paper, we propose a novel method to search for discriminative regions to increase the confidence of CNNs in the classification of features in specific category, thereby helping users understand which regions in an image are important for a CNN to make a particular prediction. In the proposed method, a set of superpixels is selected in an evolutionary process, such that discriminative regions can be found automatically. Many experiments are conducted to verify the effectiveness of the proposed method. The average drop and average increase obtained with the proposed method are 0 and 77.8%, respectively, in fundus image classification, indicating that the proposed method is very effective in identifying discriminative regions. Additionally, several interesting findings are reported: 1) Some superpixels, which contain the evidence used by humans to make a certain decision in practice, can be identified as discriminative regions via the proposed method; 2) The superpixels identified as discriminative regions are distributed in different locations in an image rather than focusing on regions with a specific instance; and 3) The number of discriminative superpixels obtained via the proposed method is relatively small. In other words, a CNN model can employ a small portion of the pixels in an image to increase the confidence for a specific category.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5949-5958"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching Discriminative Regions for Convolutional Neural Networks in Fundus Image Classification With Genetic Algorithms\",\"authors\":\"Yibiao Rong;Tian Lin;Haoyu Chen;Zhun Fan;Xinjian Chen\",\"doi\":\"10.1109/TIP.2024.3477932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional neural networks (CNNs) have been widely used for fundus image classification and have achieved very impressive performance. However, the explainability of CNNs is poor because of their black-box nature, which limits their application in clinical practice. In this paper, we propose a novel method to search for discriminative regions to increase the confidence of CNNs in the classification of features in specific category, thereby helping users understand which regions in an image are important for a CNN to make a particular prediction. In the proposed method, a set of superpixels is selected in an evolutionary process, such that discriminative regions can be found automatically. Many experiments are conducted to verify the effectiveness of the proposed method. The average drop and average increase obtained with the proposed method are 0 and 77.8%, respectively, in fundus image classification, indicating that the proposed method is very effective in identifying discriminative regions. Additionally, several interesting findings are reported: 1) Some superpixels, which contain the evidence used by humans to make a certain decision in practice, can be identified as discriminative regions via the proposed method; 2) The superpixels identified as discriminative regions are distributed in different locations in an image rather than focusing on regions with a specific instance; and 3) The number of discriminative superpixels obtained via the proposed method is relatively small. In other words, a CNN model can employ a small portion of the pixels in an image to increase the confidence for a specific category.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"5949-5958\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720678/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10720678/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度卷积神经网络(CNN)已被广泛用于眼底图像分类,并取得了令人瞩目的成绩。然而,由于 CNN 的黑箱特性,其可解释性较差,这限制了其在临床实践中的应用。在本文中,我们提出了一种新颖的方法,通过搜索具有区分性的区域来增加 CNN 对特定类别特征分类的信心,从而帮助用户了解图像中哪些区域对 CNN 做出特定预测非常重要。在所提出的方法中,一组超像素是在进化过程中选出的,这样就能自动找到判别区域。为了验证所提方法的有效性,我们进行了许多实验。在眼底图像分类中,所提方法获得的平均下降率和平均上升率分别为 0 和 77.8%,表明所提方法在识别分辨区域方面非常有效。此外,还报告了几个有趣的发现:1)一些包含人类在实践中做出某种决定所使用的证据的超像素可以通过所提出的方法识别为判别区域;2)被识别为判别区域的超像素分布在图像的不同位置,而不是集中在具有特定实例的区域;3)通过所提出的方法获得的判别超像素的数量相对较少。换句话说,CNN 模型可以利用图像中的一小部分像素来提高特定类别的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Searching Discriminative Regions for Convolutional Neural Networks in Fundus Image Classification With Genetic Algorithms
Deep convolutional neural networks (CNNs) have been widely used for fundus image classification and have achieved very impressive performance. However, the explainability of CNNs is poor because of their black-box nature, which limits their application in clinical practice. In this paper, we propose a novel method to search for discriminative regions to increase the confidence of CNNs in the classification of features in specific category, thereby helping users understand which regions in an image are important for a CNN to make a particular prediction. In the proposed method, a set of superpixels is selected in an evolutionary process, such that discriminative regions can be found automatically. Many experiments are conducted to verify the effectiveness of the proposed method. The average drop and average increase obtained with the proposed method are 0 and 77.8%, respectively, in fundus image classification, indicating that the proposed method is very effective in identifying discriminative regions. Additionally, several interesting findings are reported: 1) Some superpixels, which contain the evidence used by humans to make a certain decision in practice, can be identified as discriminative regions via the proposed method; 2) The superpixels identified as discriminative regions are distributed in different locations in an image rather than focusing on regions with a specific instance; and 3) The number of discriminative superpixels obtained via the proposed method is relatively small. In other words, a CNN model can employ a small portion of the pixels in an image to increase the confidence for a specific category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1