南极洲中子监测器测量到的推断宇宙射线光谱指数的变化

Pradiphat Muangha, David Ruffolo, Alejandro Sáiz, Chanoknan Banglieng, Paul Evenson, Surujhdeo Seunarine, Suyeon Oh, Jongil Jung, Marc L. Duldig and John E. Humble
{"title":"南极洲中子监测器测量到的推断宇宙射线光谱指数的变化","authors":"Pradiphat Muangha, David Ruffolo, Alejandro Sáiz, Chanoknan Banglieng, Paul Evenson, Surujhdeo Seunarine, Suyeon Oh, Jongil Jung, Marc L. Duldig and John E. Humble","doi":"10.3847/1538-4357/ad73d6","DOIUrl":null,"url":null,"abstract":"A technique has recently been developed for tracking short-term spectral variations in Galactic cosmic rays (GCRs) using data from a single neutron monitor (NM), by collecting histograms of the time delay between successive neutron counts and extracting the leader fraction L as a proxy of the spectral index. Here we analyze L from four Antarctic NMs from 2015 March to 2023 September. We have calibrated L from the South Pole NM with respect to a daily spectral index determined from published data of GCR proton fluxes during 2015–2019 from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station. Our results demonstrate a robust correlation between the leader fraction and the spectral index fit over the rigidity range 2.97–16.6 GV for AMS-02 data, with uncertainty of 0.018 in the daily spectral index as inferred from L. In addition to the 11 yr solar activity cycle, a wavelet analysis confirms a 27 day periodicity in the GCR flux and spectral index corresponding to solar rotation, especially near sunspot minimum, while the flux occasionally exhibits a strong harmonic at 13.5 days. The magnetic field component along a nominal Parker spiral (i.e., the magnetic sector structure) is a strong determinant of such spectral and flux variations, with the solar wind speed exerting an additional, nearly rigidity-independent influence on flux variations. Our investigation affirms the capability of ground-based NM stations to accurately and continuously monitor cosmic-ray spectral variations over the long-term future.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations in the Inferred Cosmic-Ray Spectral Index as Measured by Neutron Monitors in Antarctica\",\"authors\":\"Pradiphat Muangha, David Ruffolo, Alejandro Sáiz, Chanoknan Banglieng, Paul Evenson, Surujhdeo Seunarine, Suyeon Oh, Jongil Jung, Marc L. Duldig and John E. Humble\",\"doi\":\"10.3847/1538-4357/ad73d6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique has recently been developed for tracking short-term spectral variations in Galactic cosmic rays (GCRs) using data from a single neutron monitor (NM), by collecting histograms of the time delay between successive neutron counts and extracting the leader fraction L as a proxy of the spectral index. Here we analyze L from four Antarctic NMs from 2015 March to 2023 September. We have calibrated L from the South Pole NM with respect to a daily spectral index determined from published data of GCR proton fluxes during 2015–2019 from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station. Our results demonstrate a robust correlation between the leader fraction and the spectral index fit over the rigidity range 2.97–16.6 GV for AMS-02 data, with uncertainty of 0.018 in the daily spectral index as inferred from L. In addition to the 11 yr solar activity cycle, a wavelet analysis confirms a 27 day periodicity in the GCR flux and spectral index corresponding to solar rotation, especially near sunspot minimum, while the flux occasionally exhibits a strong harmonic at 13.5 days. The magnetic field component along a nominal Parker spiral (i.e., the magnetic sector structure) is a strong determinant of such spectral and flux variations, with the solar wind speed exerting an additional, nearly rigidity-independent influence on flux variations. Our investigation affirms the capability of ground-based NM stations to accurately and continuously monitor cosmic-ray spectral variations over the long-term future.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad73d6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad73d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近开发了一种利用单个中子监测器(NM)的数据跟踪银河宇宙射线(GCR)短期光谱变化的技术,方法是收集连续中子计数之间的时间延迟直方图,并提取领导分数 L 作为光谱指数的替代值。在此,我们分析了 2015 年 3 月至 2023 年 9 月期间四个南极中子监测器的 L。我们根据国际空间站上阿尔法磁谱仪(AMS-02)公布的 2015-2019 年期间 GCR 质子通量数据确定的每日光谱指数,对南极 NM 的 L 进行了校准。我们的结果表明,在 AMS-02 数据的刚度范围 2.97-16.6 GV 内,领导者分量与光谱指数拟合之间存在稳健的相关性,根据 L 推断出的日光谱指数的不确定性为 0.018。除了 11 年的太阳活动周期外,小波分析还证实了 GCR 通量和光谱指数与太阳自转相对应的 27 天周期性,尤其是在太阳黑子最小值附近,而通量偶尔会在 13.5 天处表现出强烈的谐波。沿标称帕克螺旋的磁场分量(即磁扇区结构)是这种光谱和磁通量变化的重要决定因素,太阳风速度对磁通量变化产生了额外的、几乎与刚性无关的影响。我们的调查证实了地基 NM 站在未来长期准确和持续监测宇宙射线光谱变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variations in the Inferred Cosmic-Ray Spectral Index as Measured by Neutron Monitors in Antarctica
A technique has recently been developed for tracking short-term spectral variations in Galactic cosmic rays (GCRs) using data from a single neutron monitor (NM), by collecting histograms of the time delay between successive neutron counts and extracting the leader fraction L as a proxy of the spectral index. Here we analyze L from four Antarctic NMs from 2015 March to 2023 September. We have calibrated L from the South Pole NM with respect to a daily spectral index determined from published data of GCR proton fluxes during 2015–2019 from the Alpha Magnetic Spectrometer (AMS-02) on board the International Space Station. Our results demonstrate a robust correlation between the leader fraction and the spectral index fit over the rigidity range 2.97–16.6 GV for AMS-02 data, with uncertainty of 0.018 in the daily spectral index as inferred from L. In addition to the 11 yr solar activity cycle, a wavelet analysis confirms a 27 day periodicity in the GCR flux and spectral index corresponding to solar rotation, especially near sunspot minimum, while the flux occasionally exhibits a strong harmonic at 13.5 days. The magnetic field component along a nominal Parker spiral (i.e., the magnetic sector structure) is a strong determinant of such spectral and flux variations, with the solar wind speed exerting an additional, nearly rigidity-independent influence on flux variations. Our investigation affirms the capability of ground-based NM stations to accurately and continuously monitor cosmic-ray spectral variations over the long-term future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultraviolet Flux and Spectral Variability Study of Blazars Observed with UVIT/AstroSat The Peculiar Disk Evolution of 4U 1630-472 Observed by Insight-HXMT During its 2022 and 2023 Outbursts Stellar Metallicities and Gradients in the Faint M31 Satellites Andromeda XVI and Andromeda XXVIII Tidal Spin-up of Subdwarf B Stars Numerical Experiment on the Influence of Granulation-induced Waves on Solar Chromosphere Heating and Plasma Outflows in a Magnetic Arcade
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1