Victoria Nasser, René Dechow, Mirjam Helfrich, Ana Meijide, Pauline Sophie Rummel, Heinz-Josef Koch, Reiner Ruser, Lisa Essich, Klaus Dittert
{"title":"管理土壤氮过剩:冬季覆盖作物在一氧化二氮排放和碳螯合中的作用","authors":"Victoria Nasser, René Dechow, Mirjam Helfrich, Ana Meijide, Pauline Sophie Rummel, Heinz-Josef Koch, Reiner Ruser, Lisa Essich, Klaus Dittert","doi":"10.5194/egusphere-2024-2849","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Cover crops are acclaimed for enhancing the environmental sustainability of agricultural practices by aiding in carbon (C) sequestration and reducing losses of soil mineral nitrogen (SMN) after harvest. Yet, their influence on nitrous oxide (N<sub>2</sub>O) emissions—a potent greenhouse gas—presents a complex challenge, with findings varying across different studies. This research aimed to elucidate the effects of various winter cover crops—winter rye (frost-tolerant), saia oat (frost-sensitive grass), and spring vetch (frost-sensitive legume)—against a control of bare fallow on SMN dynamics, N<sub>2</sub>O emissions and C sequestration. While cover crops efficiently lowered SMN levels during their growth, they also increased N<sub>2</sub>O emissions in comparison to bare fallow conditions. Notably, winter frost events triggered significant emissions from the frost-sensitive varieties. Moreover, the practices of residue incorporation and soil cultivation were associated with increased N<sub>2</sub>O emissions across all cover crop treatments. Winter rye, distinguished by its high biomass production and nitrogen (N) uptake, was linked to the highest cumulative N<sub>2</sub>O emissions, highlighting the impact of biomass management and cultivation techniques on N cycling and N<sub>2</sub>O emissions. Cover crop treatment lead to a slight increase in direct N<sub>2</sub>O emissions (4.5±3.0, 2.7±1.4, and 3.1±3.8 kg N<sub>2</sub>O-N ha<sup>-1</sup> for rye, oat, and vetch, respectively) compared to the fallow (2.6±1.7 kg N<sub>2</sub>O-N ha<sup>-1</sup>) over the entire trial period (16 months). However, the potential of non-legume cover crops to reduce indirect N<sub>2</sub>O emissions compared to fallow (0.3±0.4 and 0.2±0.1 kg N<sub>2</sub>O-N ha<sup>-1</sup> a<sup>-1</sup> for rye and oat respectively) and their contribution to carbon sequestration (120–150 kg C ha<sup>-1</sup> a<sup>-1</sup> over a period of 50 years when growing cover crops every fourth year) might partially counterbalance these emissions. Thus, while cover crops offer environmental benefits, their net impact on N<sub>2</sub>O emissions necessitates further exploration into optimized cover crop selection and management strategies tailored to specific site conditions to fully leverage their ecological advantages.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"73 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Managing Soil Nitrogen Surplus: The Role of Winter Cover Crops in N2O Emissions and Carbon Sequestration\",\"authors\":\"Victoria Nasser, René Dechow, Mirjam Helfrich, Ana Meijide, Pauline Sophie Rummel, Heinz-Josef Koch, Reiner Ruser, Lisa Essich, Klaus Dittert\",\"doi\":\"10.5194/egusphere-2024-2849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Cover crops are acclaimed for enhancing the environmental sustainability of agricultural practices by aiding in carbon (C) sequestration and reducing losses of soil mineral nitrogen (SMN) after harvest. Yet, their influence on nitrous oxide (N<sub>2</sub>O) emissions—a potent greenhouse gas—presents a complex challenge, with findings varying across different studies. This research aimed to elucidate the effects of various winter cover crops—winter rye (frost-tolerant), saia oat (frost-sensitive grass), and spring vetch (frost-sensitive legume)—against a control of bare fallow on SMN dynamics, N<sub>2</sub>O emissions and C sequestration. While cover crops efficiently lowered SMN levels during their growth, they also increased N<sub>2</sub>O emissions in comparison to bare fallow conditions. Notably, winter frost events triggered significant emissions from the frost-sensitive varieties. Moreover, the practices of residue incorporation and soil cultivation were associated with increased N<sub>2</sub>O emissions across all cover crop treatments. Winter rye, distinguished by its high biomass production and nitrogen (N) uptake, was linked to the highest cumulative N<sub>2</sub>O emissions, highlighting the impact of biomass management and cultivation techniques on N cycling and N<sub>2</sub>O emissions. Cover crop treatment lead to a slight increase in direct N<sub>2</sub>O emissions (4.5±3.0, 2.7±1.4, and 3.1±3.8 kg N<sub>2</sub>O-N ha<sup>-1</sup> for rye, oat, and vetch, respectively) compared to the fallow (2.6±1.7 kg N<sub>2</sub>O-N ha<sup>-1</sup>) over the entire trial period (16 months). However, the potential of non-legume cover crops to reduce indirect N<sub>2</sub>O emissions compared to fallow (0.3±0.4 and 0.2±0.1 kg N<sub>2</sub>O-N ha<sup>-1</sup> a<sup>-1</sup> for rye and oat respectively) and their contribution to carbon sequestration (120–150 kg C ha<sup>-1</sup> a<sup>-1</sup> over a period of 50 years when growing cover crops every fourth year) might partially counterbalance these emissions. Thus, while cover crops offer environmental benefits, their net impact on N<sub>2</sub>O emissions necessitates further exploration into optimized cover crop selection and management strategies tailored to specific site conditions to fully leverage their ecological advantages.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2849\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2849","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Managing Soil Nitrogen Surplus: The Role of Winter Cover Crops in N2O Emissions and Carbon Sequestration
Abstract. Cover crops are acclaimed for enhancing the environmental sustainability of agricultural practices by aiding in carbon (C) sequestration and reducing losses of soil mineral nitrogen (SMN) after harvest. Yet, their influence on nitrous oxide (N2O) emissions—a potent greenhouse gas—presents a complex challenge, with findings varying across different studies. This research aimed to elucidate the effects of various winter cover crops—winter rye (frost-tolerant), saia oat (frost-sensitive grass), and spring vetch (frost-sensitive legume)—against a control of bare fallow on SMN dynamics, N2O emissions and C sequestration. While cover crops efficiently lowered SMN levels during their growth, they also increased N2O emissions in comparison to bare fallow conditions. Notably, winter frost events triggered significant emissions from the frost-sensitive varieties. Moreover, the practices of residue incorporation and soil cultivation were associated with increased N2O emissions across all cover crop treatments. Winter rye, distinguished by its high biomass production and nitrogen (N) uptake, was linked to the highest cumulative N2O emissions, highlighting the impact of biomass management and cultivation techniques on N cycling and N2O emissions. Cover crop treatment lead to a slight increase in direct N2O emissions (4.5±3.0, 2.7±1.4, and 3.1±3.8 kg N2O-N ha-1 for rye, oat, and vetch, respectively) compared to the fallow (2.6±1.7 kg N2O-N ha-1) over the entire trial period (16 months). However, the potential of non-legume cover crops to reduce indirect N2O emissions compared to fallow (0.3±0.4 and 0.2±0.1 kg N2O-N ha-1 a-1 for rye and oat respectively) and their contribution to carbon sequestration (120–150 kg C ha-1 a-1 over a period of 50 years when growing cover crops every fourth year) might partially counterbalance these emissions. Thus, while cover crops offer environmental benefits, their net impact on N2O emissions necessitates further exploration into optimized cover crop selection and management strategies tailored to specific site conditions to fully leverage their ecological advantages.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).